

The Elster Electricity Meter
And ABB Instrument
Transformer
Application Guide

12th Edition (reprint)

Copyright Notice

© 2003 by Elster Electricity, LLC. All rights reserved. Information herein is subject to change without notice. Product specifications may change. Contact your Elster Electricity representative for the most current product information regarding Elster Electricity meters, and contact your ABB Inc. representative regarding ABB transformers. ABB transformer information is included in this manual with license agreement and permission from ABB Inc.

No part of this document may be reproduced, transmitted, processed or recorded by any means or form, electronic mechanical, photographic or otherwise, translated into another language, or be released to any third party without the express written consent of Elster Electricity, LLC, and ABB Inc.

About the reprint

The contact information has been modified since the original publication of the 12th edition. Company names, addresses, and telephone numbers are current as of September 2003. Additionally, the copyright notice and the disclaimer of warranties and limitiation of liability notice have been modified to reflect both Elster Electricity, LLC, and ABB Inc. All other information has not changed since the first release of the 12th edition in September 1999.

DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITY NOTICE

There are no understandings, agreements, representations, or warranties either expressed or implied, including warranties of merchantability or fitness for a particular purpose, other than those specifically set out by any existing contract between the parties. Any such contract states the entire obligation of the seller. The contents of this document shall not become part of or modify any prior or existing agreement, commitment, or relationship.

The information, recommendations, descriptions, and safety notices in this document are based on ABB's and Elster Electricity's experience and judgment with respect to operation and maintenance of the described product. This information should not be considered as all-inclusive or covering all contingencies. If further information is required, either ABB Inc. or Elster Electricity, LLC, should be contacted.

No warranties, either expressed or implied, including warranties of fitness for a particular purpose or merchantability, or warranties arising from the course of dealing or usage of trade, are made regarding the information, recommendations, descriptions, warnings, and cautions contained herein.

In no event will ABB Inc. or Elster Electricity, LLC, be responsible to the user in contract, in tort (including negligence), strict liability or otherwise for any special, indirect, incidential, or consequential damage or loss whatsoever, including but not limited to: damage or loss of use of equipment, cost of capital, loss of profits or revenues, or claims against the user by its customers resulting from the use of the information, recommendations, descriptions, and safety notices contained herein.

Printed in the United States.

Elster Electricity, LLC

Raleigh, North Carolina, USA

- +1 800 338 5251 (US Technical Support)
- +1 800 257 9754 (US Sales Support)
- +1 919 212 4800 (US Main Telephone)
- +1 905 634 4895 (Canadian Main Telephone)

support@us.elster.com www.elsterelectricity.com

ABB Inc.

Highway 43 North Pinetops, NC 27864 Tel: +1 252 827 3212 Fax: +1 252 827 4286 www.abb.com/mediumvoltage

CONTENTS

	PAGE
INTRODUCTION	1
INSTRUCTIONS ON HOW TO USE "ALL IN ONE"	3
GUIDE TO SELECTION OF EQUIPMENT	4
PRODUCT BULLETIN FOR NUMBERS OF CURRENT AND VOLTAGE TRANSFORMERS	5
GLOSSARY OF SYMBOLS	6
WIRING DIAGRAMS AND BILL OF MATERIALS	
SINGLE-PHASE	7
NETWORK	12
THREE-PHASE, THREE-WIRE DELTA	15
THREE-PHASE, FOUR-WIRE DELTA	20
THREE-PHASE, FOUR-WIRE WYE	26
REACTIVE MEASUREMENT	41
METER CONSTANTS	45
REACTIVE MEASUREMENT (ELECTROMECHANICAL METERS ONLY)	47
CALIBRATION INFORMATION	48
MAINTENANCE AND TESTING PROCEDURE	59
RULES FOR CHECKING METER INSTALLATIONS	60
FUNDAMENTALS OF INSTRUMENT TRANSFORMERS	61
FUNDAMENTALS OF WATTHOUR METERS	68
HANDY TABLES AND FORMULAS	69

INTRODUCTION

This book is intended as a suggested ABB metering application, installation, testing, and ordering information guide. While these subjects are covered in great detail, these instructions cannot be substituted for proper operation and service practices. Competent, well-trained, and experienced personnel with adequate technical and safety knowledge of the metering equipment are most essential for successful and safe meter usage. Unusual and special situations will require consulting other meter publications, handbooks, instruction guides, and/or proper ABB representatives. Because of these factors, ABB cannot be responsible or liable for consequential damages which may result from misuse, misinterpretation, or errors relating to this publication.

IMPORTANT APPLICATION INFORMATION

All ABB meters are calibrated and sealed before shipment. To assure safe installation, good accuracy, and maximum life of the meter, the following procedures are suggested.

Socket Connected "S" Type Meters

- 1. Grounding of meter lightning arrester ground straps with socket rim should be ensured by scraping off paint, if any, from socket rim at point of contact.
- 2. Make certain socket terminal wiring is as shown in appropriate diagrams herein.
- 3. Meter class rating is the maximum current rating. Meter and socket class rating should be compatible.
- 4. Install meter in upright position with rotor shaft vertical and free from heavy vibration.

WARNING

Dangerous high voltage results from open-current transformer secondaries. Therefore, make use of circuit closing devices or equipment to avoid electrical shock and/or bodily injury.

Bottom Connected "A" Type Meters

1. A reversible meter hanger is attached to the rear of the base and can be adjusted for external or concealed mounting. For a concealed mounting, located, and insert in the mounting surface, the top supporting screw. A keyhole slot is provided for the supporting screw which should be a size No. 12 or larger.

Bottom Connected "A" Type Meters (Continued)

- 2. A 0.280-inch diameter mounting hole is located on each side of the base just above the terminal block for two bottom supporting screws. Level the meter, insert the two screws, and tighten. The screws should be a size No. 12 or larger.
- 3. An electrical grounding of the meter base is recommended to assure safety. Attach a No. 12 AWG copper wire (or larger) to the external surface of the base by using one of the mounting screws or a self-tapping screw in the base. WARNING: Grounding should be completed before external connections to the meter are made to avoid electrical shock.
- 4. All connections to the meter should be made as shown in the appropriate diagram herein. Connecting of accessories are covered in individual instruction leaflets. All connections should be made right-to-left to assure connection of the meter to the load circuit before the line potential is applied.
- The terminal holes for current leads will accept No. 2 (0.292-inch diameter) standard wire. Use proper adapters for larger wire size.

CAUTION

Since the current terminals will only accept a maximum size No. 2 conductor, continuous load current from 150 to 200 amperes will require the use of a proper adapter or heat sinks not to exceed the maximum operating meter temperature, thereby presenting a fire hazard.

NOTE: For calibration, test and maintenance information, consult the appropriate meter instruction leaflet.

CAUTION

For safety — DO NOT insert apparatus into an energized socket of improper connections or voltage. DO NOT service the apparatus while energized. DO NOT energize the apparatus with the cover removed. Failure to follow these precautionary steps may lead to bodily injury and/or property damage.

INSTRUCTIONS ON HOW TO USE

1	You will note that each metering					
111	You will note that each metering	scheme on the	various nages	indicates the type	of meter and	socket required
ب	i Tou will how that each incurring	seneme on me	various pages	marcates the type	or meter and	socket required.

The diagram headings show "Most Economical" and "Conventional" metering schemes. The use of the "Most Economical" schemes result in no reduction in accuracy, however, it reduces the number of current transformers needed by one and permits the use of simpler, less expensive watthour meters. Use of either system depends on wire size, physical layout, and your utility practices.

3 In general —

- Use self-contained single phase meters up to 48 KVA
- Use self-contained polyphase meters up to 96 KVA (except 480 volts delta)
- In all cases, do not exceed 200 amperes on class 200 meters
- Above these respective ratings, use transformer-rated meters.

4 Current transformers should be selected so that the meter is approximately 80% loaded; allowing 20% additional capacity for further growth.

CAUTION: Never leave energized current transformer secondaries open. Open circuited current transformers secondaries may develop high voltages that are dangerous to personnel and equipment. Sockets having automatic short circuiting devices are recommended.

Transformer-rated meters are class 20, except where noted and give straight line accuracy up to 20 amperes and are recommended for use with 5 ampere transformer secondaries. These class 20 meters are also recommended for class 10 applications.

GUIDE TO SELECTION OF EQUIPMENT

6 METHOD FOR DETERMINING THE PROPER SELECTION OF METERS AND INSTRUMENT TRANSFORMERS ALONG WITH SOCKETS ...

You should know the following information before making a selection:

Six Basic Questions 1. Type MOUNTING desired.	Available Selections A. Socket	
2. Type SERVICE to be metered.	 a. 1-phase, 3-wire b. 2-phase, 2-wire c. 3-phase, 3-wire DELTA d. 3-phase, 3-wire NETWORK e. 3-phase, 3-wire URBAN NETWORK f. 3-phase, 4-wire DELTA g. 3-phase, 4-wire WYE (2-stator meter) h. 3-phase, 4-wire WYE (3-stator meter) 	
3. Meter TEST AMPS or CLASS required.	B. Maximum Current Meter Meter to be Metered TEST AMPS CLASS	
NOTE: Meter CLASS is the maximum continuous amperage to meter coils.	a. 100 amperes 15 100 b. 200 amperes 30 200 c. Over 200 amperes 2.5 20	
4. FREQUENCY AND VOLTAGE	C. Frequency — 50 or 60 Hertz D. Voltage a. 72 volts b. 120 volts c. 240 volts d. 480 volts	
5. Type REGISTER desired.	E. Registers a. Type	
NOTE: Current and Voltage transformer ratios must be obtained and included in the order entry.	(1) Clock Dial (2) Drum Cyclometer (3) Drum Odometer b. Number of DIALS (1) 5 (2) 4	
6. Type COVER desired.	F. Coversa. Glass (single-phase and network polyphase only)b. Polycarbonate (plastic)	
After arriving at this information, turn to the follow	ving pages which show diagrams for self-contained meters	:
Network 3-phase, 3-wire 3-phase, 4-wire Delta	page 7 page 12 page 15 page 20 page 26	,
If load exceeds the capacity of the self-contained m the use of instrument transformers:	neter, the following pages should be used, which incorpora	te
Network	page 9 page 13 page 16 page 22 page 30)

CAUTION: Use instrument transformers when voltage exceeds the limits of secondary metering (480 volts). For maximum safety, instrument transformers are recommended above 240 volts.


PRODUCT BU	JLLETINS			
600 VOLT CURRENT TRANSFORMERS				
Primary Current	Туре	Product Bulletin		
50 thru 1000	IMC	42-810		
200 thru 800 200 thru 400	CBU	42-811 42-812		
200 thru 400 200 thru 600	CBH CSF	42-813		
200 thru 800	CSH	42-814		
200 and 300	CMS	42-815		
100 thru 1200	CMF	42-818		
200 thru 4000 600 thru 4000	CMV CLC	42-820 42-824		
1000 thru 6000	CLE	42-826		
600 thru 4000	RLC	42-828		
Multi-Ratio	Auxiliary	42-850		
Multi-Ratio 600 thru 3000	A-Auto Ext. BCT	42-852 42-858		
600 VOLT VOLTAGE				
Primary Voltage	Туре	Product Bulletin		
240 thru 600	PPW	42-871		
240 thru 600	PPM	42-873		
60 thru 480	PPX	42-873		
5KV-34.5V CURREN'	Γ TRANSFORMER	S		
Class	Туре	Product Bulletin		
15 Kv Indoor	KIR-11	42-914		
5-8.7 Kv Outdoor	KOR-60/75	42-920		
15 Kv Outdoor 15 Kv Outdoor	KOR-11 KOR-11	42-922 42-949		
25 Kv Outdoor	KOR-11 KOR-15	42-949		
34.5 Kv Outdoor	KOR-15B	42-926A		
34.5 Kv Outdoor	KOR-20	42-928		
5-25 Kv Outdoor 15-34.5 Kv Outdoor	KOT KOTD	42-930 42-940		
13-34.3 KV Ouldoor	KOID	42-940		
5KV-34.5KV VOLTAG				
Class	Туре	Product Bulletin		
5 Kv Indoor	VIY-60	42-951		
8.7-15 Kv Indoor	VIZ-75/11	42-955		
25 Kv Indoor 5 Kv Outdoor	VIZ/VIY-12G VOY-60	42-976 42-961		
8.7-15 Ky Outdoor	VOZ-75/11	42-963		
15 Kv Outdoor	VOY-11	42-964		
15 Kv Outdoor	VOG-11	42-965		
25 Kv Outdoor	VOZ-15 VOY-12	42-971 42-966		
	VOI-12 VOG-12	42-966 42-967		
	VOY-15/15G	42-970		
	VOZZ-15/15G	42-978		
34.5 Kv Outdoor	VOZ-20 VOY-20/20G	42-975		
	VOY-20/20G VOHD200/200G	42-974 42-977		
	VOID200/200G VOZZ-20/20G	42-977		
25 Kv Outdoor	VIZ/VIY-12G	42-976		

GLOSSARY OF SYMBOLS

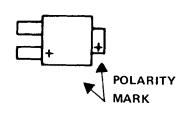
VT Voltage Transformer(s)
CT Current Transformer(s)

2-Wire CT Single Primary-Single Secondary CT

C Current
P Potential
G Ground
N Neutral

GROUND

BAR OR WOUND PRIMARY TYPE CT


POLARITY MARK

WINDOW OR THROUGH TYPE CT

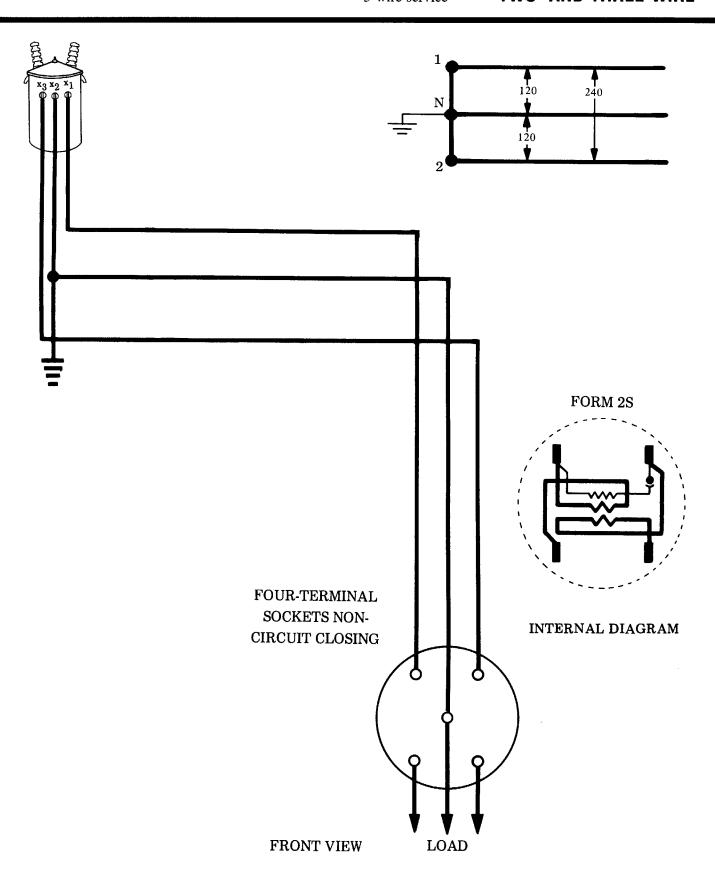
Effective Ratio Same
As Nameplate

VOLTAGE TRANSFORMER

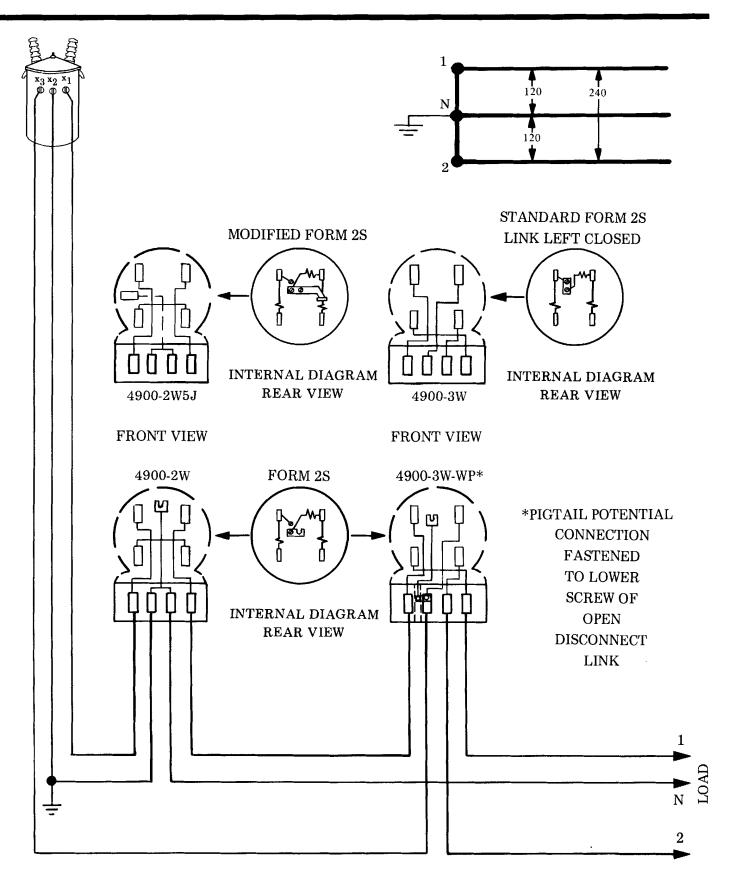
POLARITY HARK

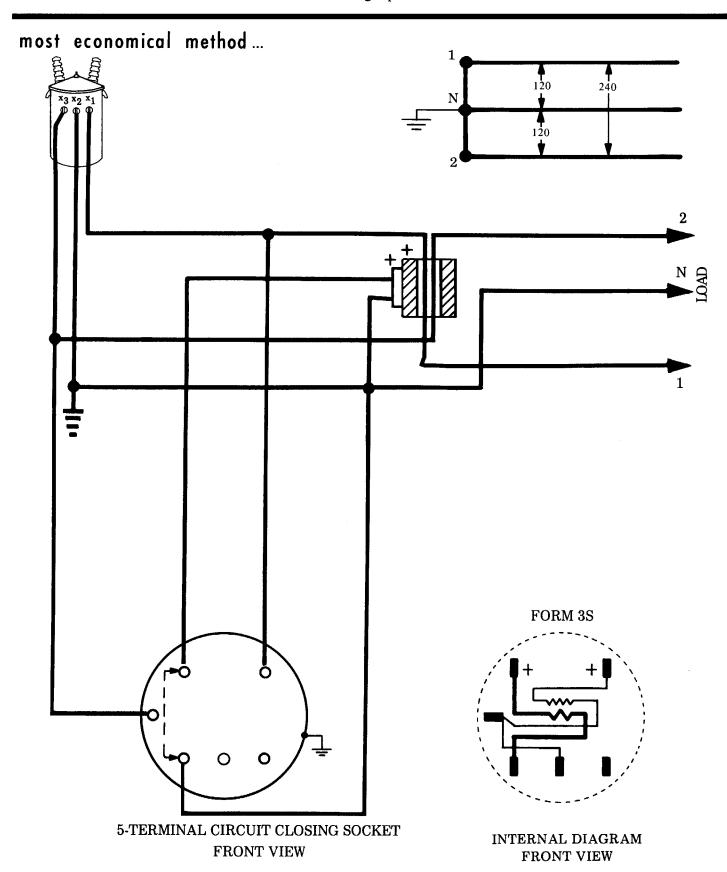
Effective Ratio Not Same As Nameplate

SEVEN POLE TEST BLOCK

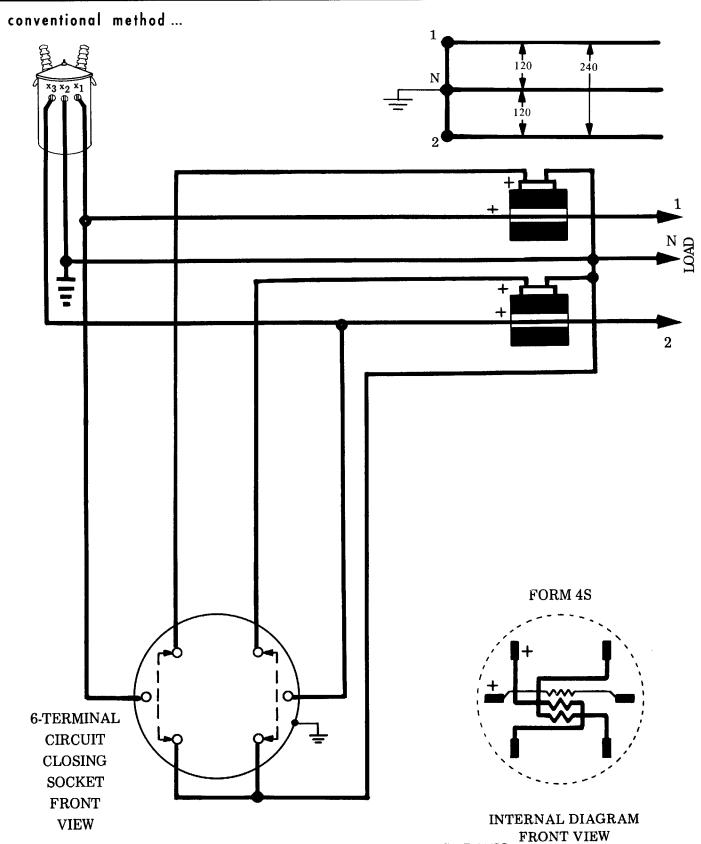

SUGGESTED ARRANGEMENT P P P C G C G

TEN POLE TEST BLOCK

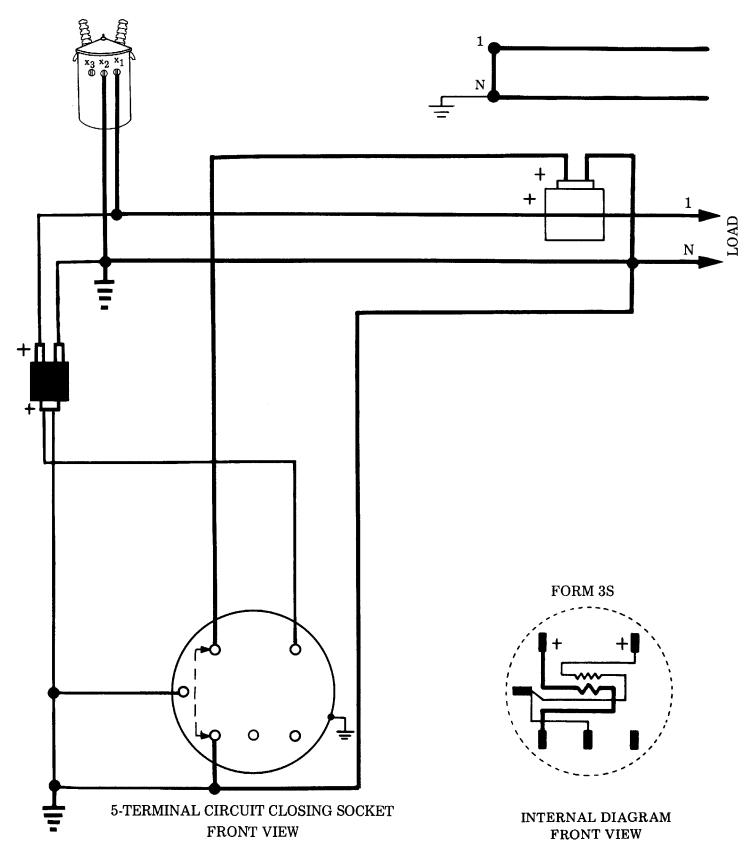

SUGGESTED ARRANGEMENT P P N C G C G C G O O O O O O O O

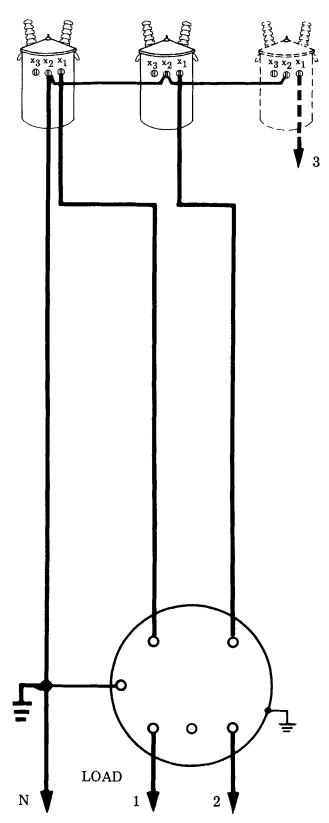

SINGLE-PHASE, TWO- AND THREE-WIRE

SINGLE-PHASE, TWO- AND THREE-WIRE

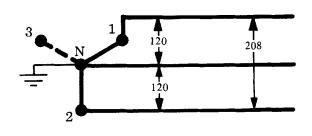

Measurement of energy from a grounded neutral 120/240 volt single-phase, two-wire or three-wire supply. Alternate configurations for using A-to-S adapter packages with a three-wire socket type meter for measurement of two-wire and three-wire services in A-base wired installations.

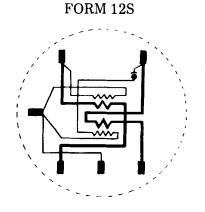
SINGLE-PHASE, THREE WIRE, WITH TWO WINDOW-TYPE CT'S


Measurement of energy on a single-phase, three-wire service with 2 CT's and a three-wire, single-phase meter.

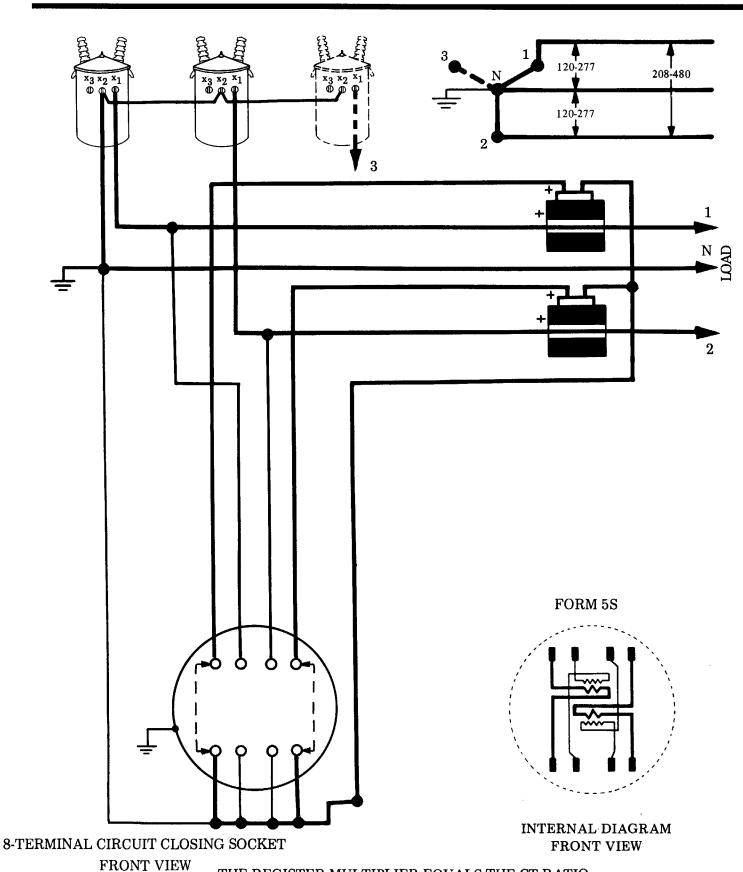

THE REGISTER MULTIPLIER EQUALS THE CT RATIO FOR SECONDARY-RATED METERS

SINGLE-PHASE, TWO-WIRE WITH CT AND VT

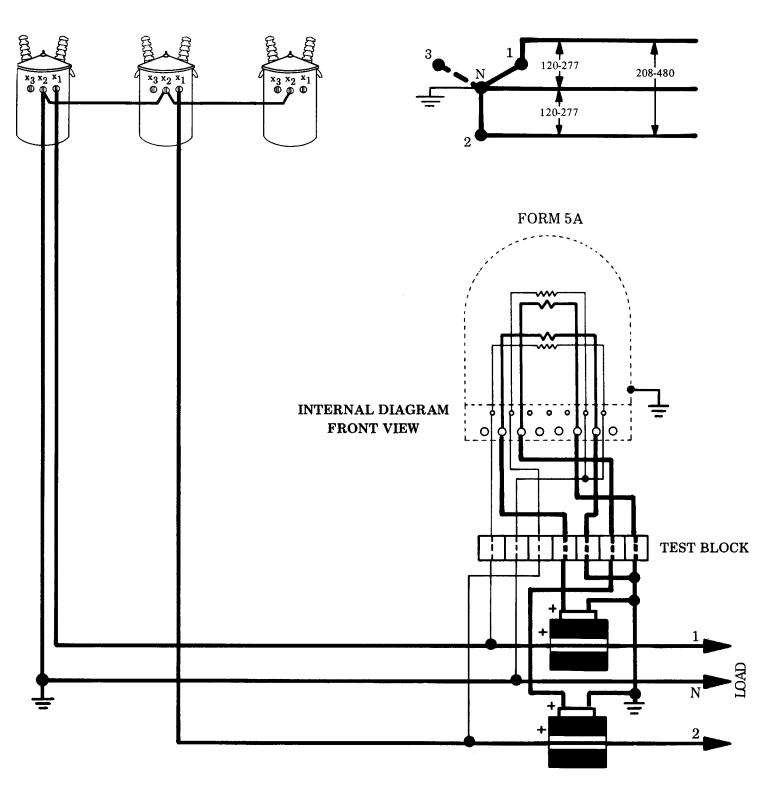

Measurement of energy on a single-phase, two-wire service with 1 CT, 1 VT, and a two-wire, single-phase transformer-type meter.



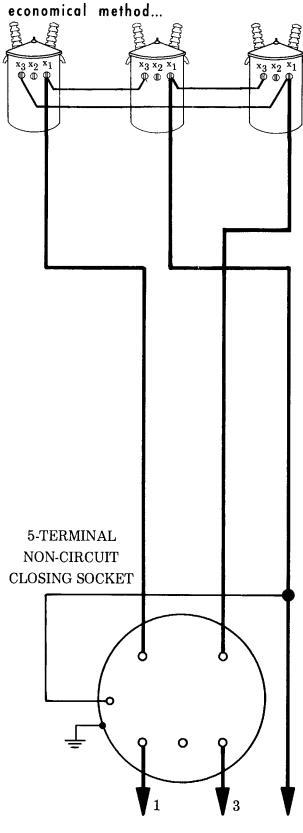
THE REGISTER MULTIPLIER EQUALS THE PRODUCT OF THE CT AND VT RATIOS FOR SECONDARY-RATED METERS



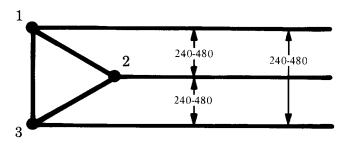
5-TERMINAL NON-CIRCUIT CLOSING SOCKET FRONT VIEW



INTERNAL DIAGRAM FRONT VIEW

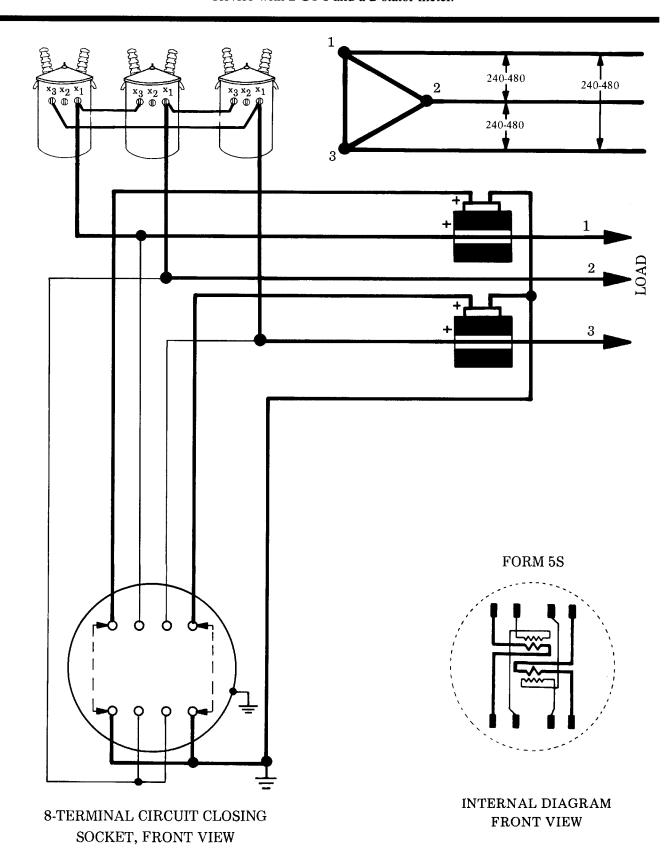

THE REGISTER MULTIPLIER EQUALS THE CT RATIO FOR SECONDARY-RATED METERS

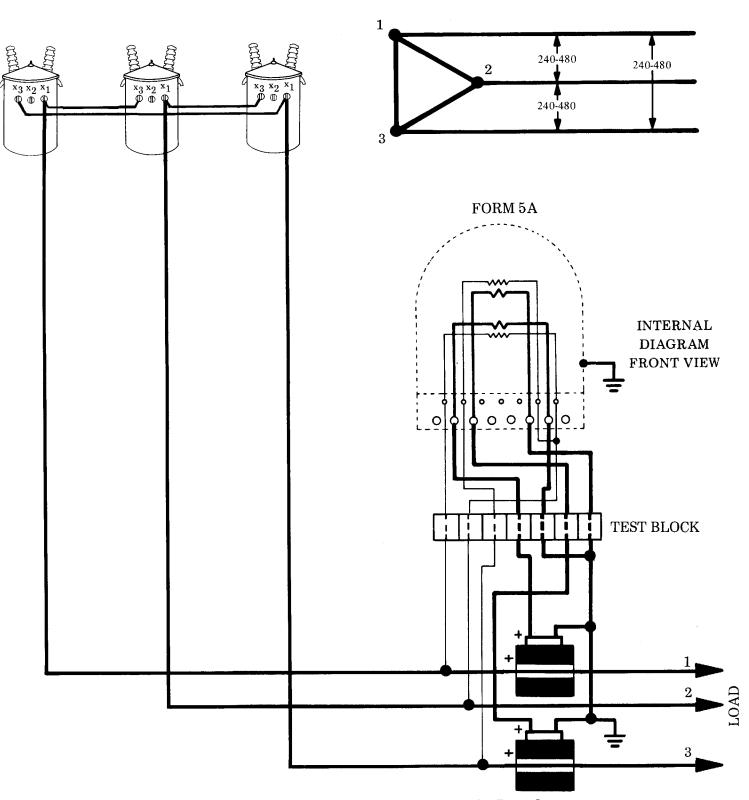
Measurement of energy on a network, three-wire service, 120/208-volt and 277/480-volt with 2 CT's and a 2-stator meter.




THE REGISTER MULTIPLIER EQUALS THE CT RATIO FOR SECONDARY-RATED METERS

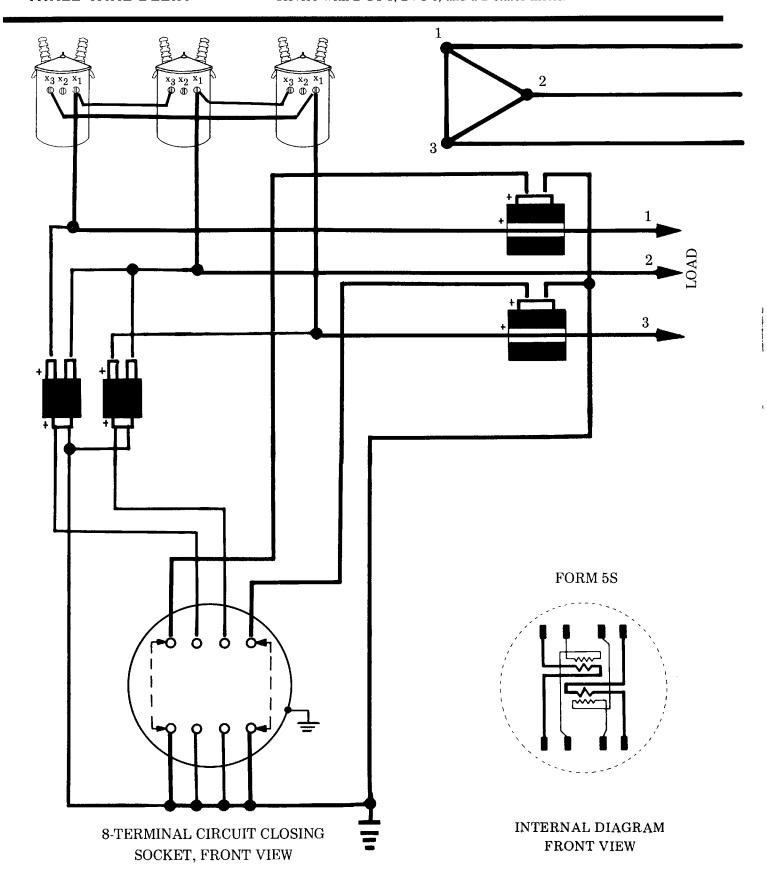
most economical method...


LOAD



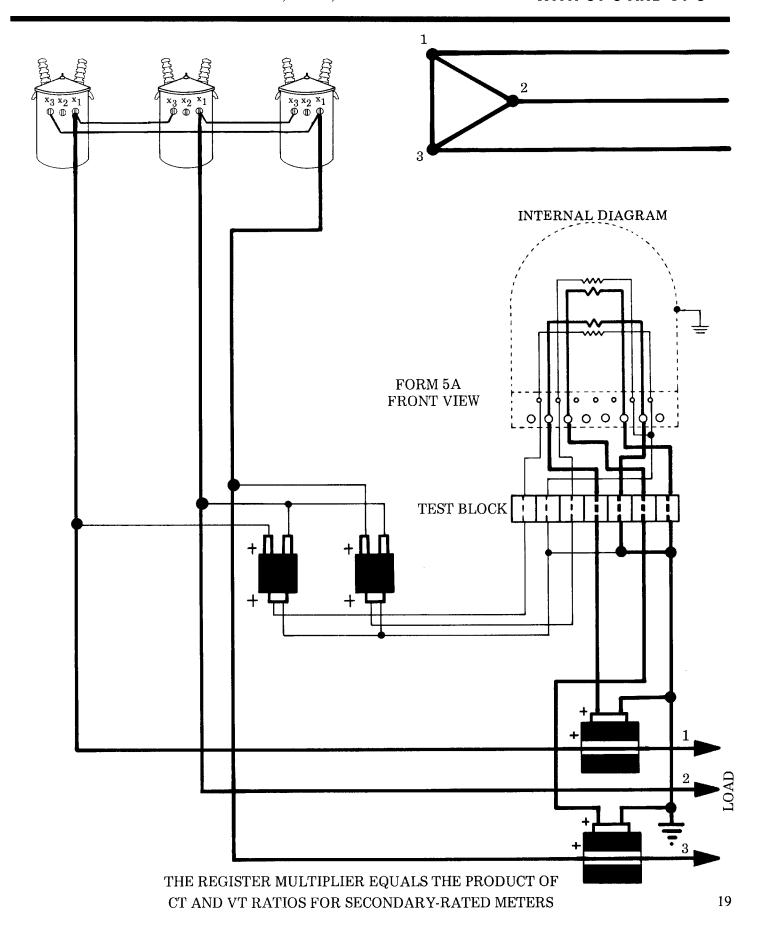
INTERNAL DIAGRAM FRONT VIEW

Measurement of energy on a three-phase, three-wire Delta service with 2 CT's and a 2-stator meter.

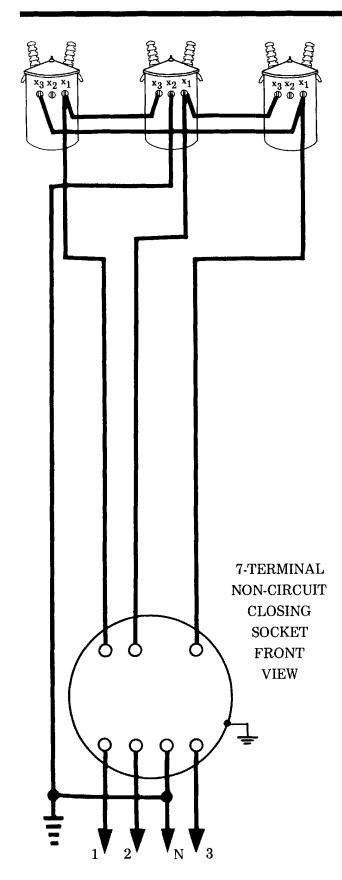

THE REGISTER MULTIPLIER EQUALS CT RATIO FOR SECONDARY-RATED METERS

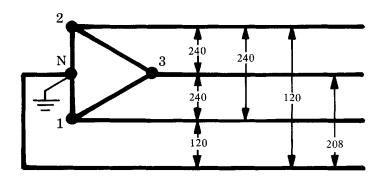
THE REGISTER MULTIPLIER EQUALS THE CT RATIO FOR SECONDARY-RATED METERS

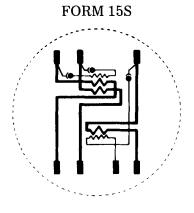
THREE-PHASE, THREE-WIRE DELTA


Measurement of energy on a three-phase, three-wire Delta service with 2 CT's, 2VT's, and a 2-stator meter.

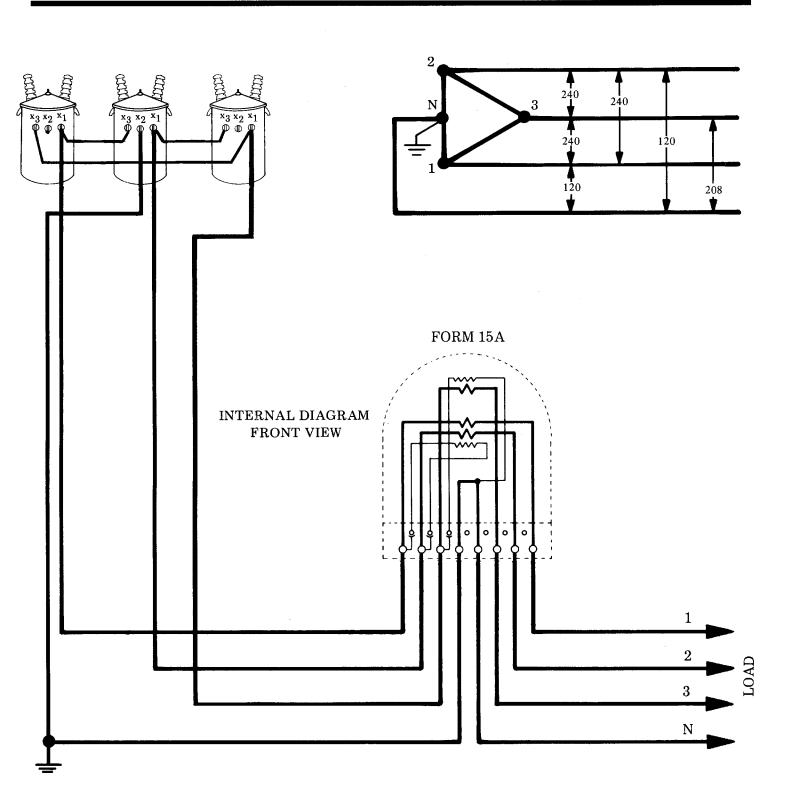
THE REGISTER MULTIPLIER EQUALS THE PRODUCT OF THE CT AND VT RATIO FOR SECONDARY-RATED METERS

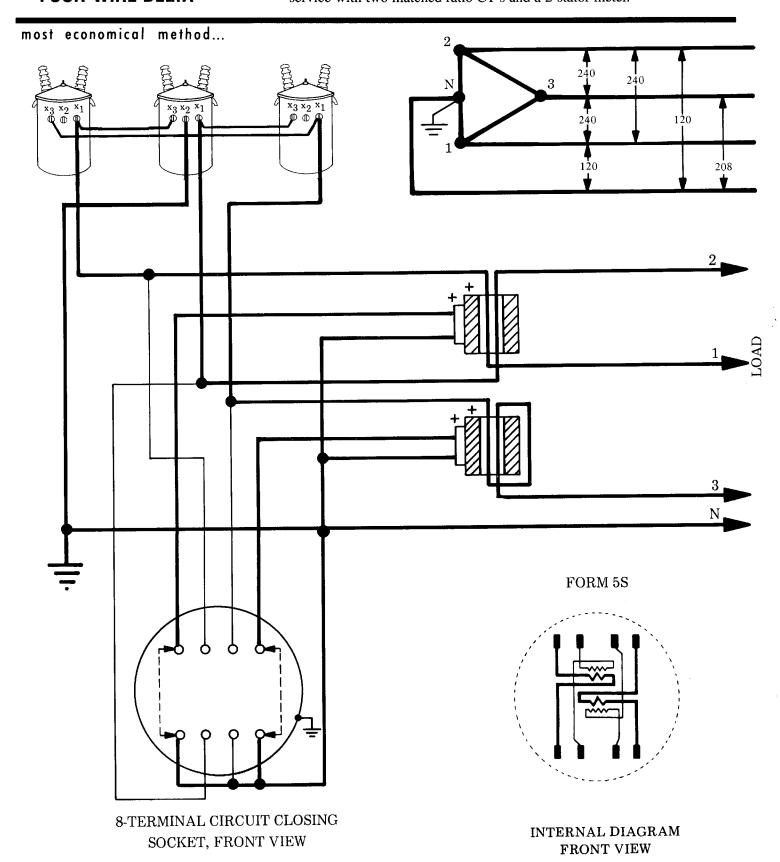

THREE-PHASE, THREE-WIRE DELTA WITH CT'S AND VT'S


Measurement of energy on a three-phase, three-wire Delta service with 2 CT's, 2 VT's, and a 2-stator meter.

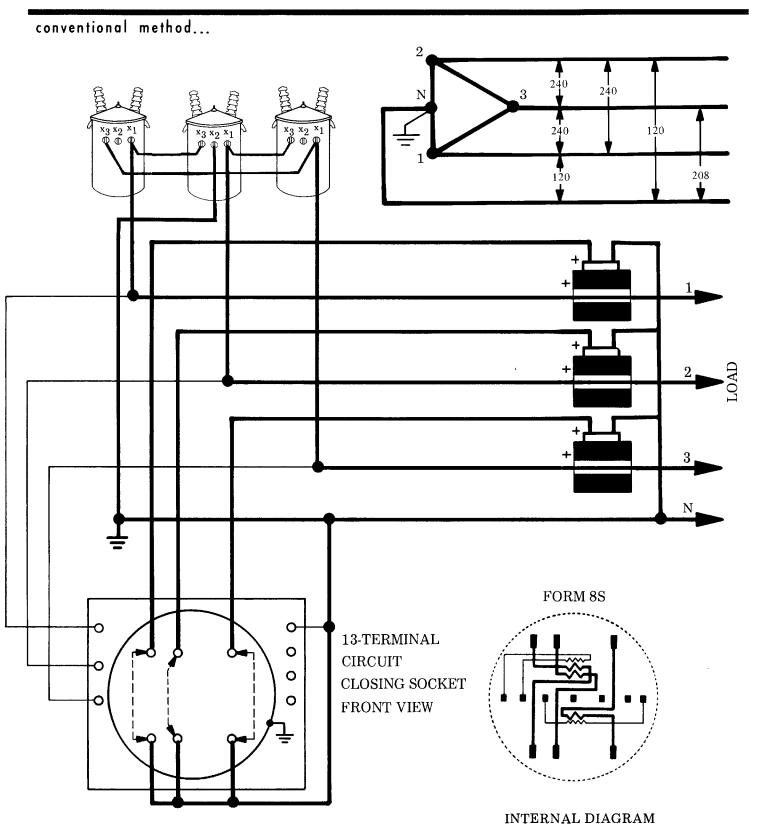


THREE-PHASE, FOUR-WIRE DELTA


Measurement of energy on a three-phase, four-wire Delta service with a 2-stator meter.

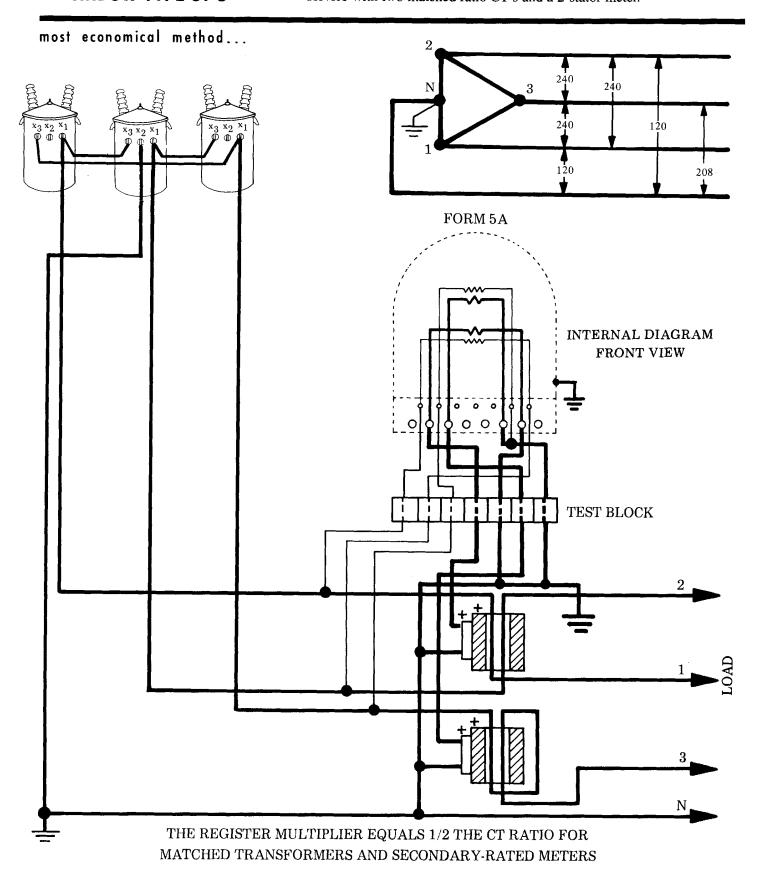


INTERNAL DIAGRAM FRONT VIEW

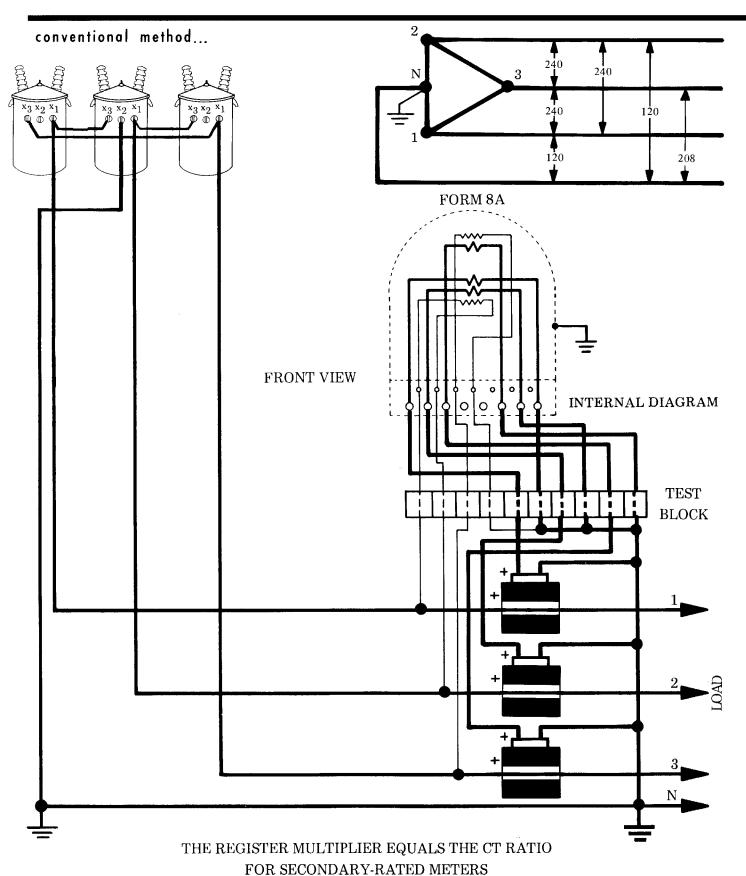

THREE-PHASE, FOUR-WIRE DELTA

Measurement of energy on a three-phase, four-wire Delta service with two matched ratio CT's and a 2-stator meter.

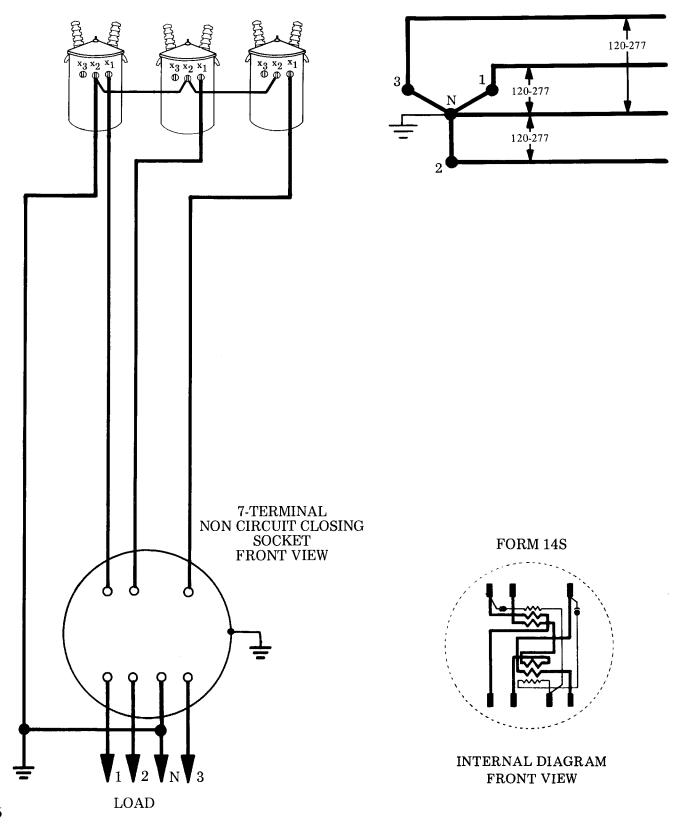
THE REGISTER MULTIPLIER EQUALS 1/2 CT RATIO FOR SECONDARY-RATED METERS


Should be considered where wire size is too large to be used in "Most Economical Method."

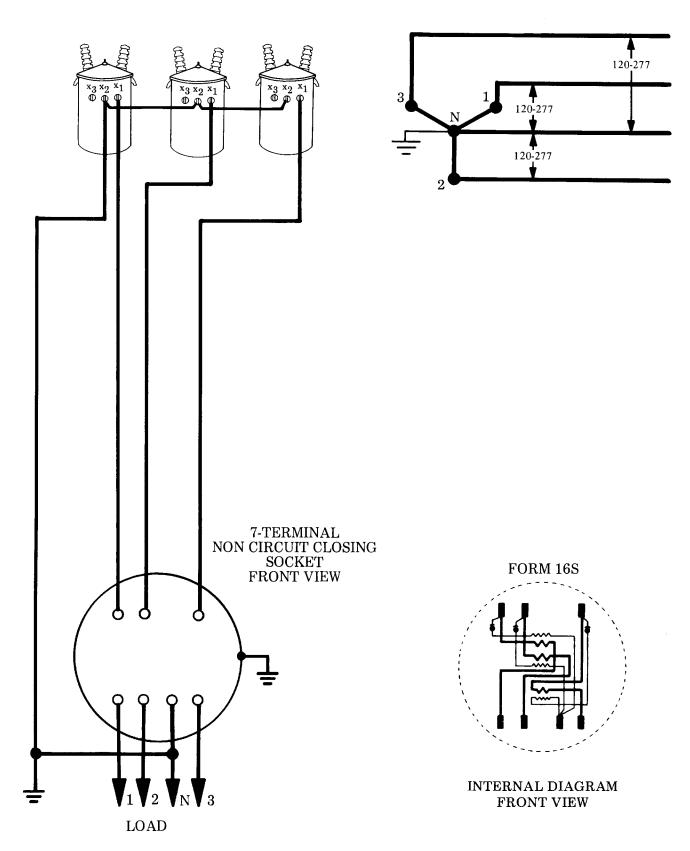
THE REGISTER MULTIPLIER EQUALS THE CT RATIO
FOR SECONDARY-RATED METERS
FRONT VIEW

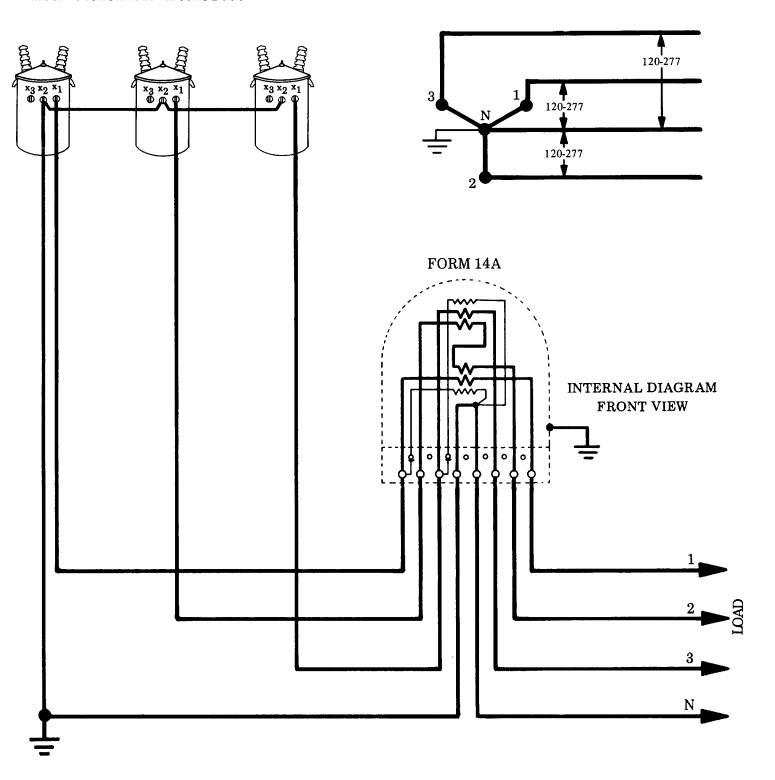

THREE-PHASE, FOUR-WIRE DELTA WITH TWO MATCHED RATIO WINDOW-TYPE CT'S

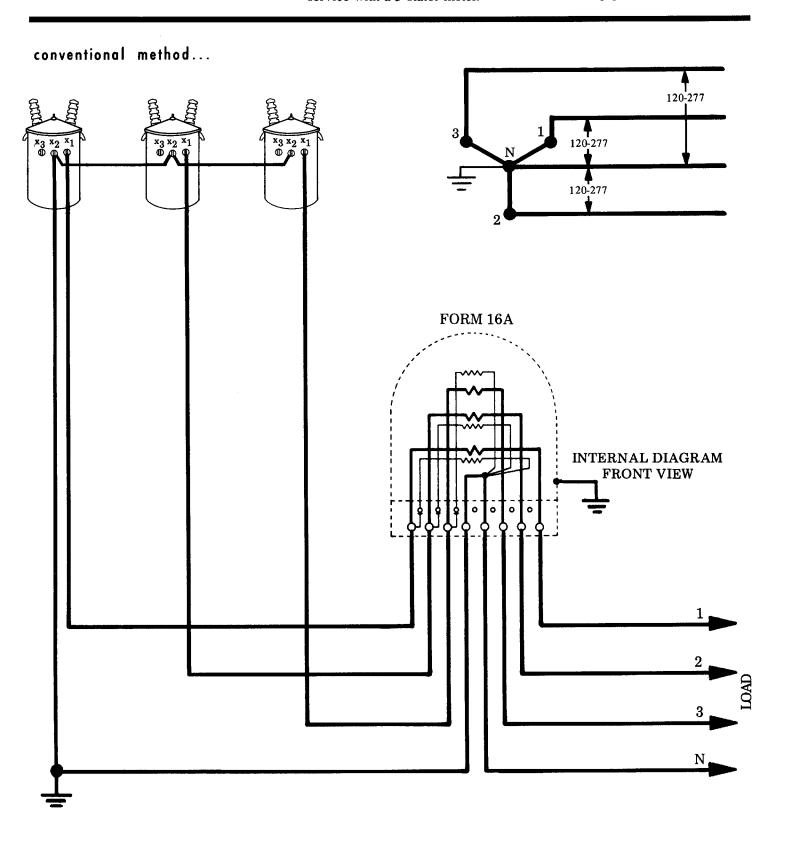
Measurement of energy on a three-phase, four-wire Delta service with two matched ratio CT's and a 2-stator meter.



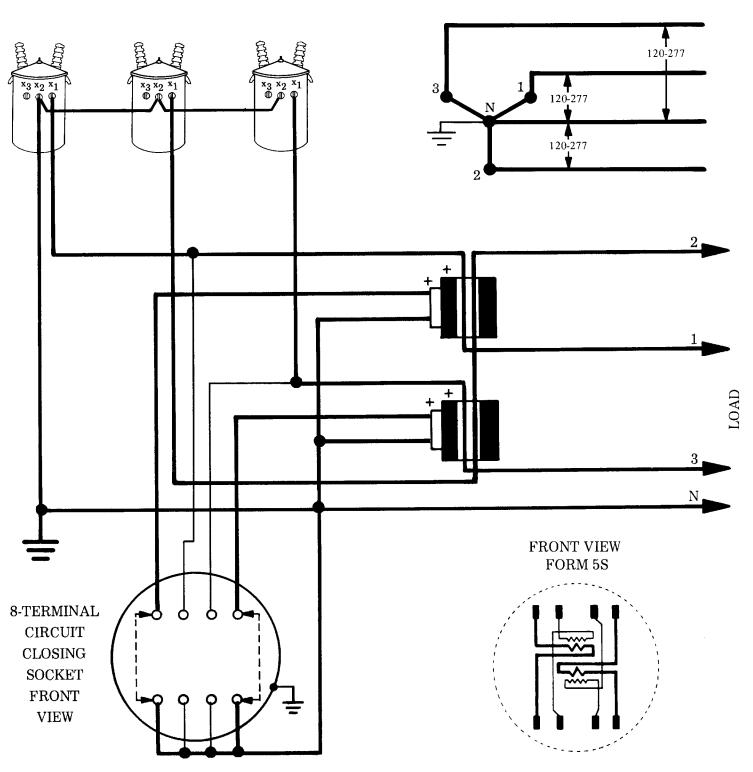
FOUR-WIRE DELTA WITH THREE WINDOW-TYPE CT'S


Should be considered where wire size is too large to be used in "Most Economical Method."

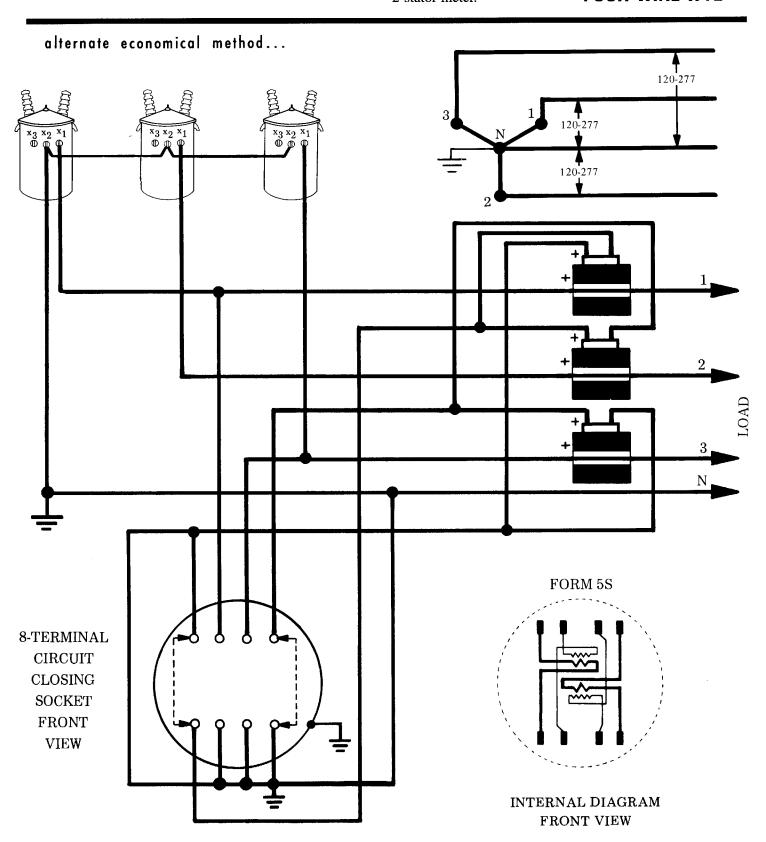

most economical method...



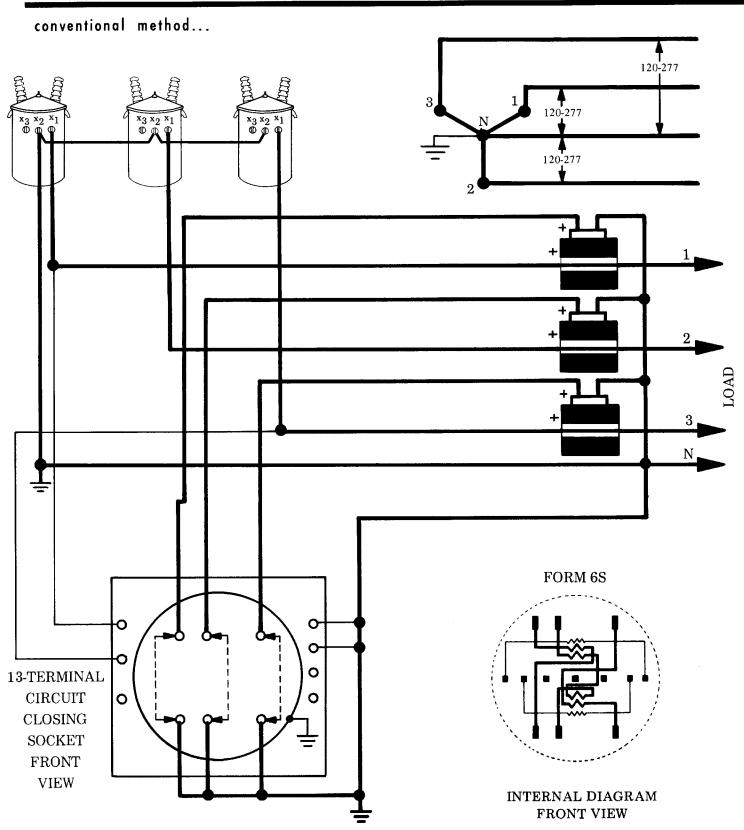
conventional method...



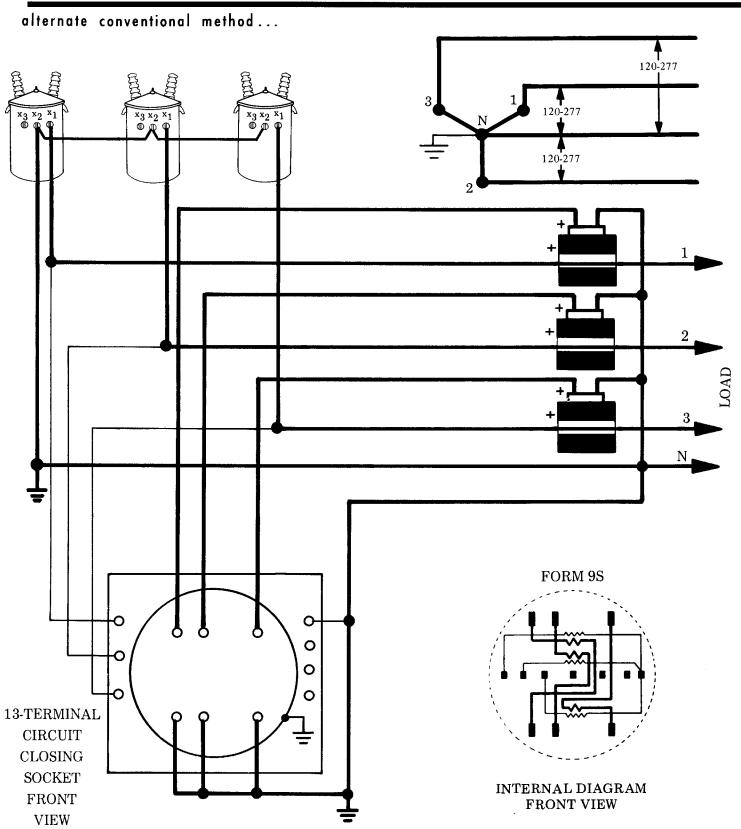
most economical method...



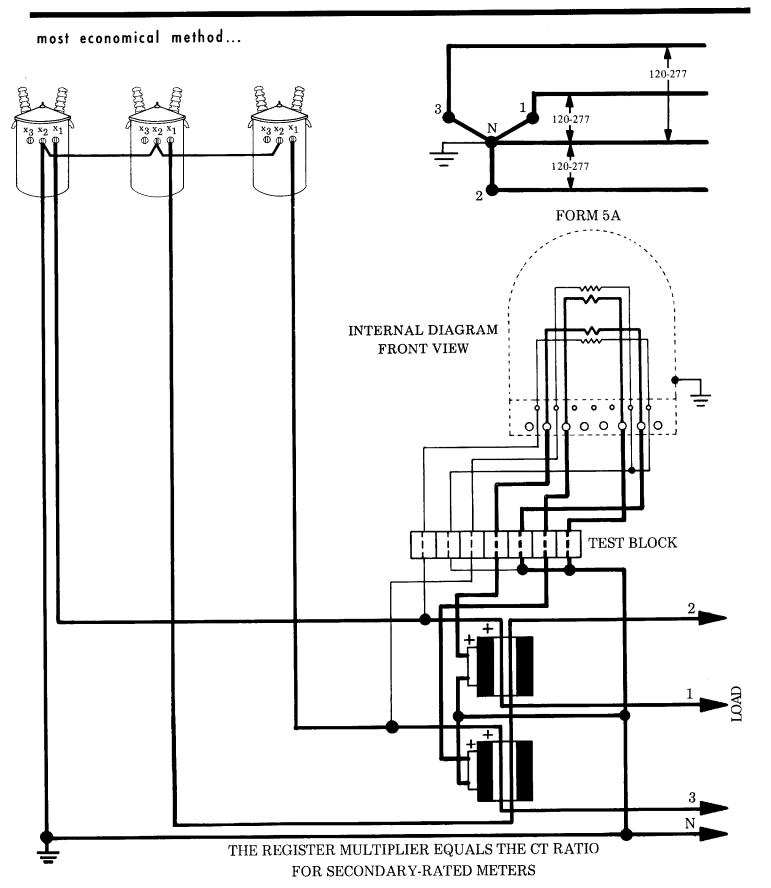
most economical method...



INTERNAL DIAGRAM


THE REGISTER MULTIPLIER EQUALS THE CT RATIO FOR SECONDARY-RATED METERS

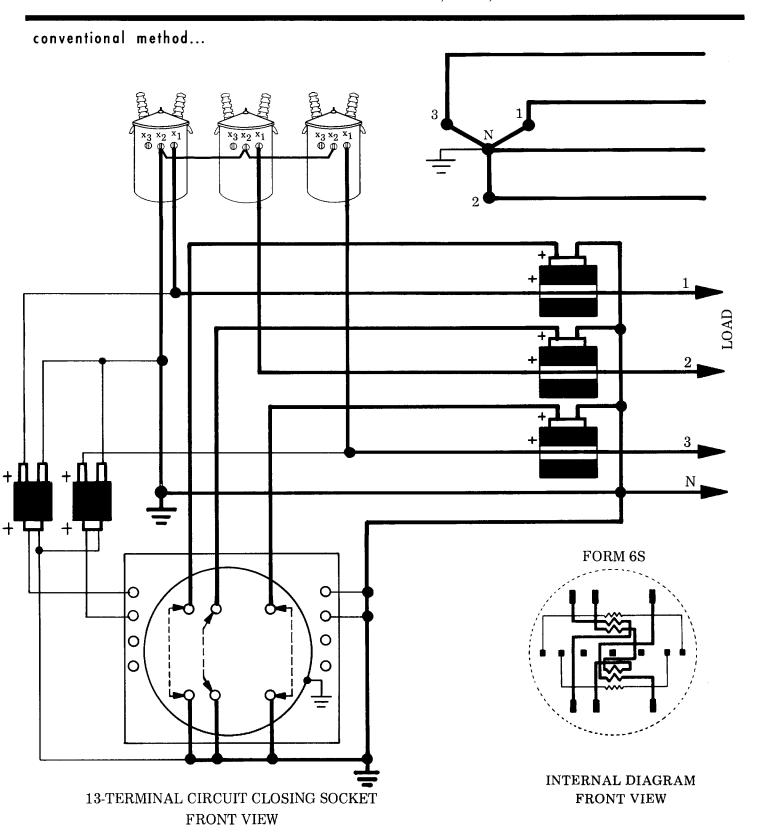
THE REGISTER MULTIPLIER EQUALS THE CT RATIO FOR SECONDARY-RATED METERS


THE REGISTER MULTIPLIER EQUALS THE CT RATIO FOR SECONDARY-RATED METERS

THE REGISTER MULTIPLIER EQUALS THE CT RATIO FOR SECONDARY-RATED METERS

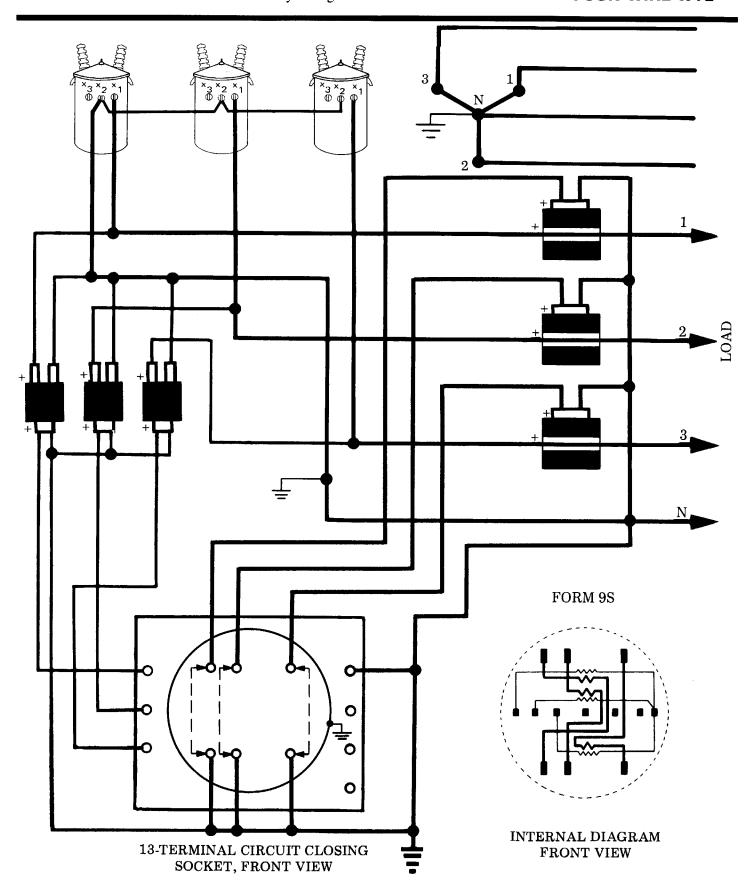
THREE-PHASE, FOUR-WIRE WYE WITH TWO WINDOW-TYPE CT'S

Measurement of energy on a three-phase, four-wire Wye service with two matched ratio CT's and a 2-stator meter.



THREE-PHASE, FOUR-WIRE WYE

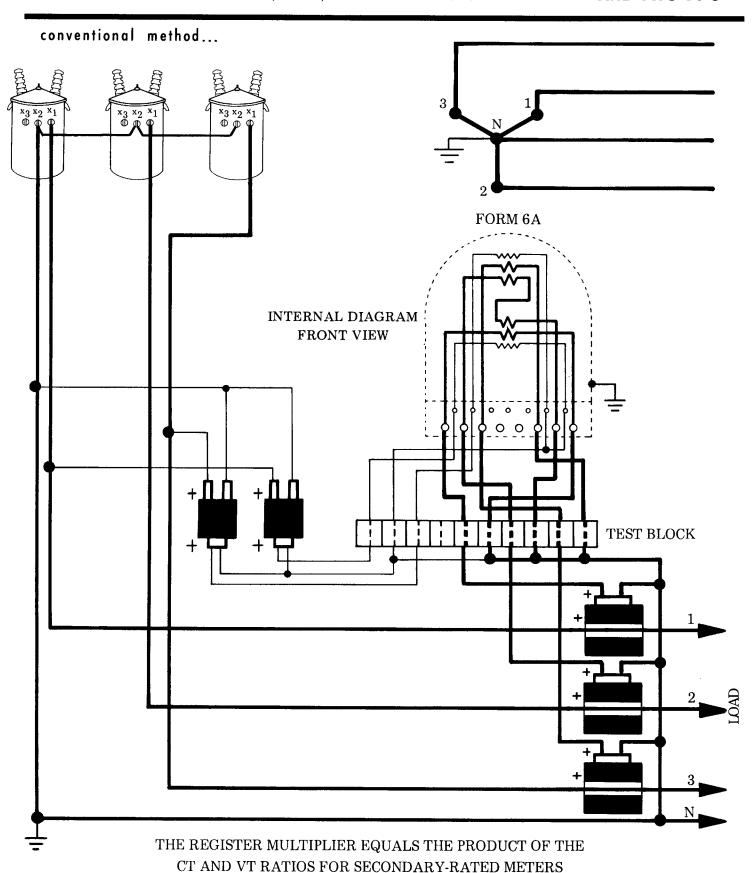
Measurement of energy on a three-phase, four-wire Wye service with 3 CT's (Delta connected secondaries), 2 VT's and a 2-stator meter.



THE REGISTER MULTIPLIER EQUALS THE PRODUCT OF THE CT AND VT RATIOS FOR SECONDARY-RATED METERS

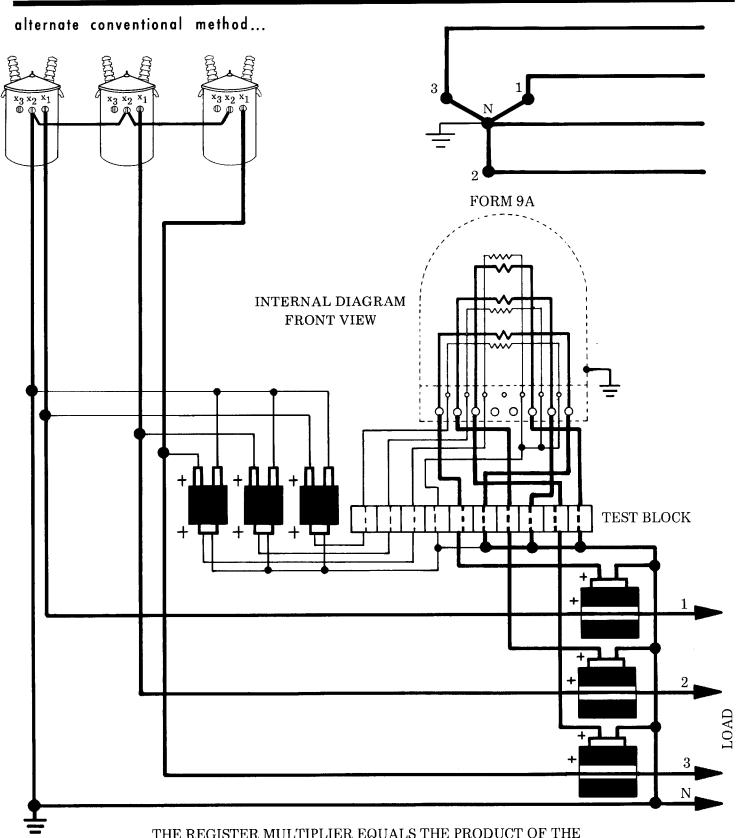

THE REGISTER MULTIPLIER EQUALS THE PRODUCT OF THE CT AND VT RATIOS FOR SECONDARY-RATED METERS

120-volt meter — Primary voltage determines VT ratio.

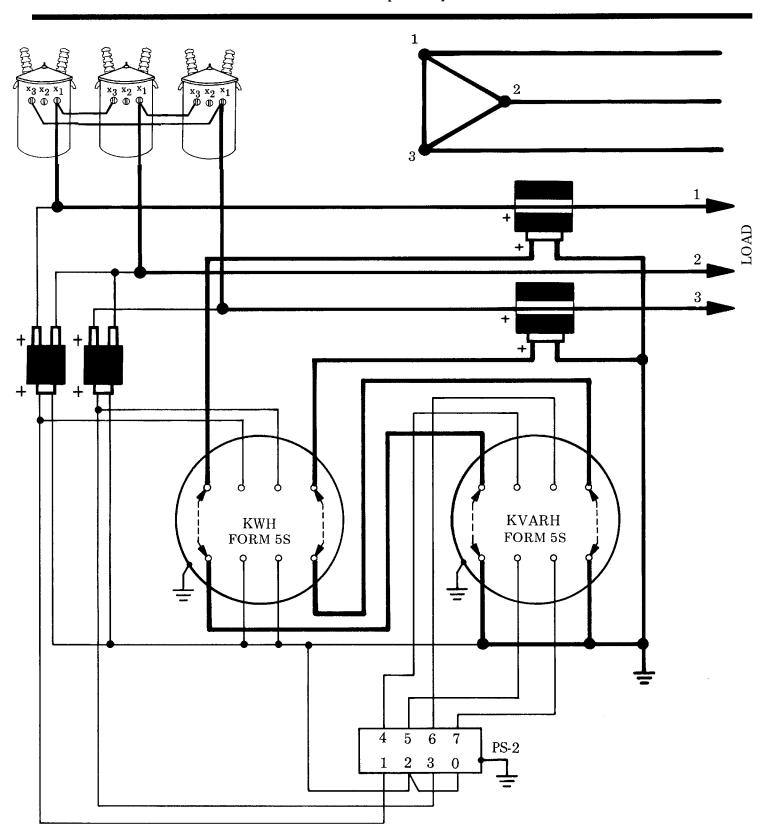


THREE-PHASE, FOUR-WIRE WYE WITH THREE CT'S AND TWO VT'S

Measurement of energy on a three-phase, four-wire Wye service with 3 CT's (secondaries in Delta), 2 VT's, and a 2-stator meter.



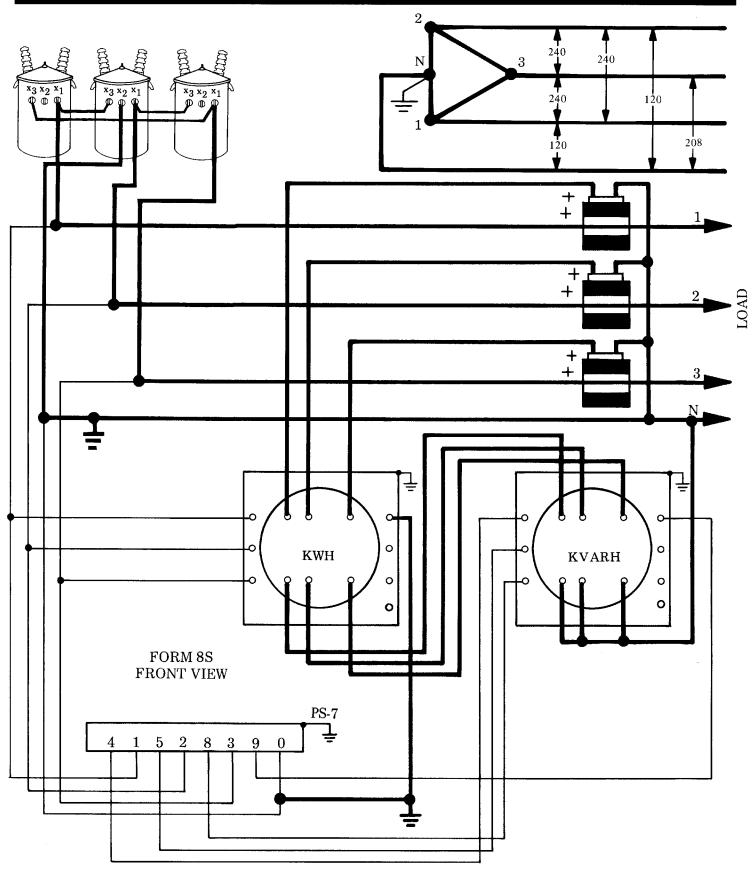
Measurement of energy on a three-phase, four-wire Wye service with 3 CT's, 2 VT's, and a 2-1/2-stator meter.

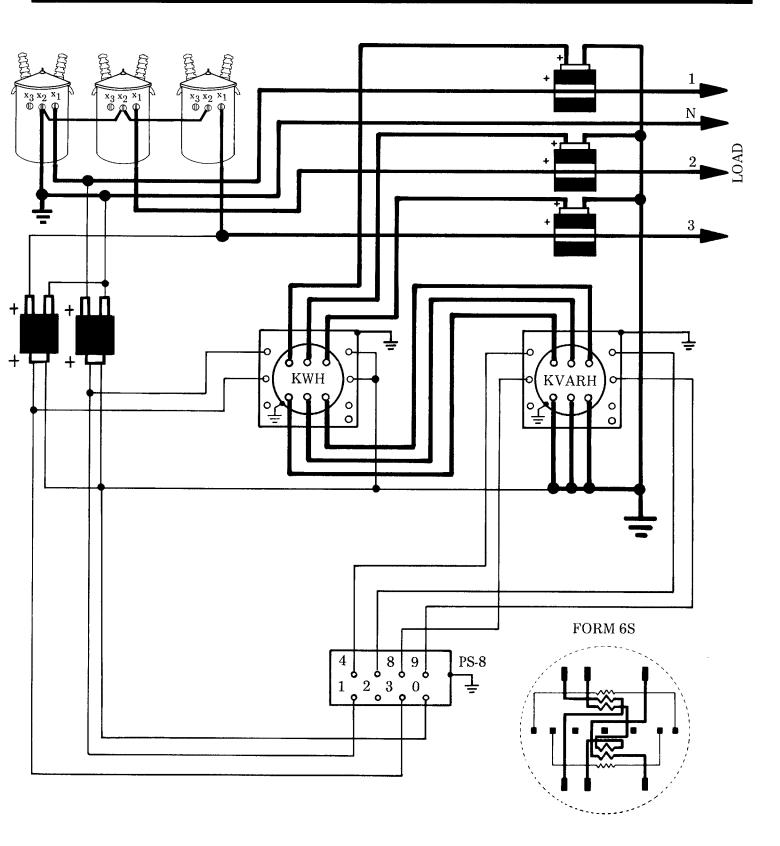


THREE-PHASE, FOUR-WIRE WYE WITH THREE CT'S AND THREE VT'S

Measurement of energy on a three-phase, four-wire Wye service with 3 CT's, 3 VT's, and a 3-stator meter.

THE REGISTER MULTIPLIER EQUALS THE PRODUCT OF THE CT AND VT RATIOS FOR SECONDARY-RATED METERS

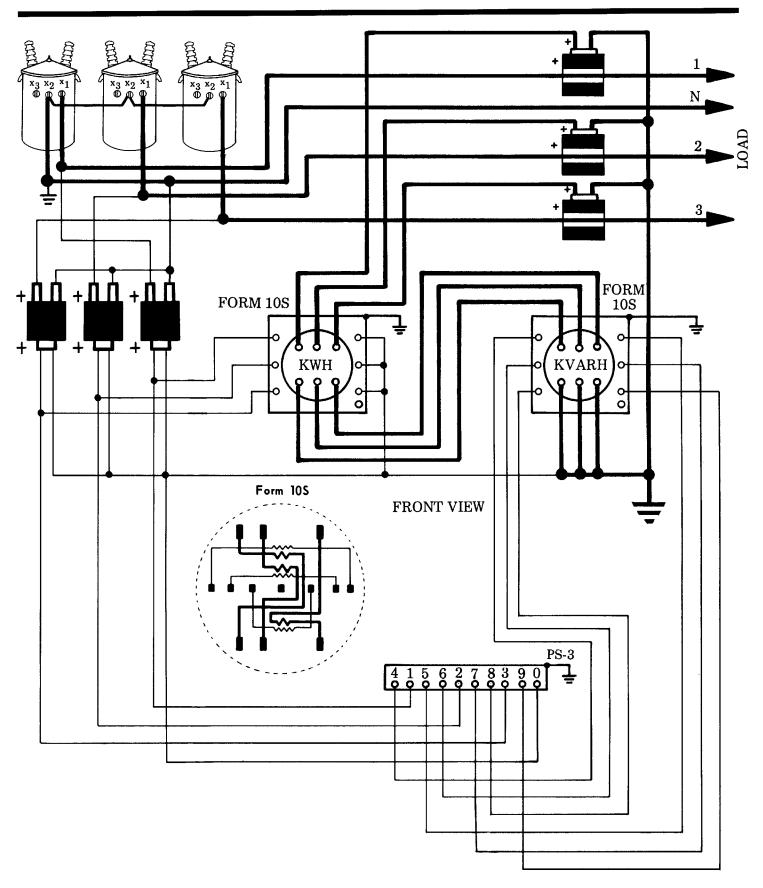



FRONT VIEW

THREE-PHASE, FOUR-WIRE DELTA REACTIVE

Measurement of KWH (and KW if required) and KVARH on a three-phase, four-wire Delta service with 3 CT's, a phase-shifting transformer, and two 2-stator meters.

Electromechanical Meters Only.



THREE-PHASE, FOUR-WIRE WYE REACTIVE

Measurement of KWH (and KW if required) and KVARH on a three-phase, four-wire Wye service with 3 CT's, 3 VT's, a phase-shifting transformer, and two 3-stator meters.

Electromechanical Meters Only.

METER CONSTANTS

Constants most commonly used in the application and calibration of watthour meters are:

1. Watthour Constants - Kh - A measure of the electrical energy registered per revolution of the meter disk - expressed as watthours per revolution.

$$Kh = \frac{\text{Test Amps x Rated Voltage x No. Stators *}}{\text{Revolutions Per Hour of Disk **}}$$

Ex. 2.5 Amp, 240 Volt, Single Stator 1000 (Single-phase meter)

Kh =
$$\frac{2.5 \times 240 \times 1}{1000}$$
 = 0.6 watthours/revolution

Note: If instrument transformers are not involved, Kh is "secondary."

If instrument transformers are used with meter, Kh = Kh sec. x CT Ratio x VT Ratio, in which case Kh is "primary."

**Revolutions per hour = 1000 for single-phase and 500 for Polyphase meters.

2. Register Ratio Rr A gear ratio equal to one revolution of the first (or fastest moving) register pointer shaft to the number of revolutions of the first register gear (pick-off gear) which meshes with the disk shaft.

$$Rr = \frac{Reading of First Dial x Watthours/Kilowatt Hours}{Watthours of Rev. of Disk x 1st Reduction at Shaft}$$

$$Rr = \frac{10 \times 1000}{Kh \times Rs}$$

If multipler Kr is used for register and if CT's and/or VT's are used:

$$Rr = \frac{10 \times 1000 \times Kr}{Kh \times Rs \times CT \times VT}$$

3. First Reduction at Shaft (Rs): A ratio of the number of revolutions of the disk to one revolution of the first register gear (pick-off gear) which meshes with the disk shaft.

ABB meters have a single lead worm on the disk shaft and a 100-tooth pick-off gear. Rs = 100/1.

(*) Use 3 for all two-stator, 3-phase, 4-wire Wye meters.

4. Register Constant (Kr): A multiplier used with register reading to obtain total registration.

For self-contained meters, Kr is generally 1 or 10.

For secondary rated transformer type meters, Kr = CT ratio x VT ratio.

For primary rated transformer type meters, Kr is generally a multiple of 10 (10, 100, 1000, 10,000, etc.). The actual value depends upon CT and VT ratios employed.

$$Kr = \frac{Kh \text{ Sec. x Rr x Rs x CT Ratio x VT Ratio}}{10,000}$$

5. Meter Disk Speed - Revolutions per Hour (R/H) - Set by meter design.

$$\frac{R}{H} = \frac{\text{Test Amps x Rated Voltage x No. Stators}}{Kh}$$

For AB1 Single Phase:
$$\frac{R}{H} = 1000$$
 (16-2/3 RPM)

For AB Polyphase:
$$\frac{R}{H} = 500$$
 (8-1/3 RPM)

6. Kilowatts (useful for test purposes) - Count disk revolutions of some predetermined number and observe seconds required (for example, 10 revs. in 6 sec.)

$$KW = \frac{Kh \ x \ CT \ Ratio \ x \ VT \ Ratio \ x \ Seconds/Hour \ x \ Rev.}{Watts/Kilowatts \ x \ Seconds}$$

Watts =
$$\frac{\text{Kh x Rev. x 3600}}{\text{Seconds}}$$

REACTIVE MEASUREMENT FOR ELECTROMECHANICAL METERS

Frequently, utility rates require Power Factor be determined. Generally, a "Weighted Average Power Factor" is utilized and obtained from monthly readings of a KWH meter and a KVARH meter.

Power Factor is expressed as a percent of true power to apparent power (KWH/KVAH). For example, 50% lagging power factor indicates that the load current lags the load voltage by 60°. Since the cosine of 60° equals .50, the true power is 50% of apparent power.

Phase shifting transformers are used in conjunction with a second KWH meter (marked KVARH) to shift voltages 90° in the lag direction. This second meter measures KVARH (it must be detented to prevent reverse rotation caused by leading PF). With monthly KWH and KVARH readings, a KVAH value can be obtained and a weighted average power factor established.

Phase shifting transformers generally have "test run" switches. In the "test" position, the KVARH meter runs as a KWH meter and can be tested as such.

It is necessary to know phase sequence in order to properly connect phase shifting transformers. Wiring shown is for A, B, C (1-2-3) sequence. Special wiring is required if phase sequence is reversed.

KWH meters can be "random" connected without regard to phase sequence since no phase shift is involved in their operation, but reactive measurement does involve phase shift and phase sequence must be considered. The exception to the above is the 4-wire Delta meter which, though not sensitive to phase sequence, must have the 2-wire stator in the "power leg."

As stated, reactive meters are generally detented since they would otherwise reverse their rotation if power factor goes leading. While leading PF loads may at times be desirable in view of system power factor, customer loads are not under the control of the utility and thus are unpredictable.

CALIBRATION INFORMATION

This section gives specific instructions for calibrating AB Single-Phase and Polyphase watthour meters. The order of calibration steps is laid out so that the effect of each adjustment on the others is minimized. Following the suggested order will avoid repetition and save time. The various instruction leaflets accompanying individual types of meters show connections and explain the mechanisms for making the adjustments. The meter nameplates give the ratings and constants. Full load is 100% of test amperes (TA) and light load is 10% of test amperes.

General information on testing all types of meters is given in the "Handbook for Electricity Metering" published by the Edison Electric Institute.

All AB1 single-phase meters operate at 16-2/3 RPM when energized at nameplate voltage and test amperes.

Test 3-wire meters with current winding in series.

See page 53 for proper connections for testing.

Calibration Procedure for Single-Phase Meters

- a. Observe full load unity P.F. and light load unity P.F. readings.
- b. Calibrate light load to full load within acceptable tolerance using the light load adjuster screw; for example: if full load is 100.7%, adjust light load to 100.7%.
- c. Calibrate full load unity PF to 100% or acceptable tolerance using the full load adjuster screw.
- d. If desired, observe full load 50% Lagging PF calibration. (Power Factor is a fixed factory adjustment.)

■ Calibration Procedure for Polyphase Meters

GENERAL TEST INFORMATION

See pages 52 to 58 for proper connections for testing. All meters are to be tested on single-phase power. Voltage coils are to be connected in parallel with voltage applied to all coils during the entire calibration procedure. Combined stator single-phase test speed at rated voltage and rated current is 8-1/3 RPM. The Form 6 and 14 meters have single-phase test speed of 11-1/9 RPM. Also note that for single element testing, the common or "Z" coil is not energized. When testing meters with 3 wire current windings, both current coils must be connected in series.

CALIBRATION PROCEDURE FOR 2-STATOR METERS

- 1. Initial Combined Stator Calibration
 - a. Connect all current coils in series.
 - b. Observed full load unity PF and light load unity PF readings.
 - c. Calibrate light load to full load within acceptable tolerance using the left light load adjuster screw (use the right only when necessary). For example, if the full load reading is 100.7%, calibrate light load to 100.7%.

2. Left Stator Calibration

- a. Make the appropriate current coil connections for left stator only operation.
- b. Observe full load unity PF. Do not adjust.
- c. Observe full load 0.5 lagging PF. If necessary, calibrate to the full load unity PF level using the left stator power factor adjuster screw. If an adjustment is made, repeat steps 2b and 2c.

3. Right Stator Calibration

- a. Make the appropriate current coil connections for right stator only operation.
- b. Observe full load unity PF. Do not adjust.
- c. Observe full load 0.5 lagging PF. If necessary, calibrate to the unity PF level using the right stator power factor adjuster screw. If an adjustment is made, repeat steps 3b and 3c.
- d. If necessary, calibrate the right stator full load unity PF to the left stator full load unity PF using the right stator phase balance (torque balance) adjuster screw.

4. Final Combined Stator Calibration

- a. Connect all current coils in series.
- b. Observe full load and light load unity PF and full load 0.5 PF lagging.
- c. If necessary, recalibrate light load to full load within acceptable tolerance using the left light load adjuster screw (use the right only when necessary).
- d. Calibrate full load unity PF to 100% or acceptable tolerance using the full load adjuster screw.
- e. If necessary, calibrate full load 0.5 lagging PF to within acceptable tolerance by adjusting both the left stator and right stator power factor adjustment screws an equal amount. If an adjustment is made, repeat step 4d.

CALIBRATION PROCEDURE FOR 3-STATOR METERS

1. Initial Combined Stator Calibration

- a. Connect all current coils in series.
- b. Observe full load unity PF and light load unity PF readings.
- c. Calibrate light load to full load within acceptable tolerance using the left light load adjuster screw (use the right only when necessary). For example, if the full load reading is 100.7%, calibrate light load to 100.7%.

2. Rear Stator Calibration

- a. Make the appropriate current coil connections for rear stator only operation.
- b. Observe full load unity PF. Do not adjust.
- c. Observe full load 0.5 lagging PF. If necessary, calibrate to the unity PF level using the rear stator power factor adjuster screw. If an adjustment is made, repeat steps 2b and 2c.

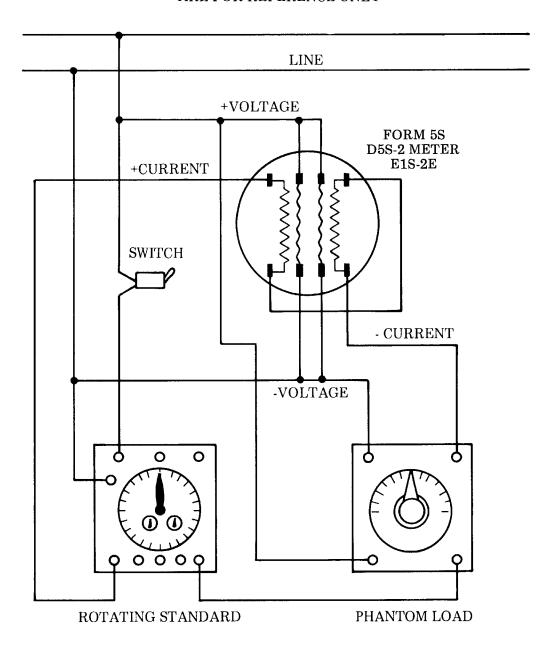
3. Left Stator Connection

- a. Make the appropriate current coil connections for left stator only operation.
- b. Observe full load unity PF. Do not adjust.
- c. Observe full load 0.5 lagging PF. If necessary, calibrate to the unity PF level using the left stator power factor adjuster screw. If an adjustment is made, repeat steps 3b and 3c.
- d. If necessary, calibrate the left stator full load unity PF to the rear stator full load unity PF using the left stator phase balance (torque balance) adjuster screw.

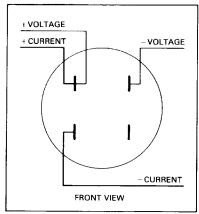
4. Right Stator Calibration

- a. Make the appropriate current coil connections for right stator only operation.
- b. Observe full load unity PF. Do not adjust.
- c. Observe full load 0.5 lagging PF. If necessary, calibrate to the unity PF level using the right stator power factor adjuster screw. If an adjustment is made, repeat steps 4b and 4c.
- d. If necessary, calibrate the right stator full load unity PF to the rear stator full load unity PF using the right stator phase balance (torque balance) adjuster screw.

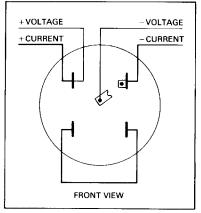
5. Final Combined Stator Calibration

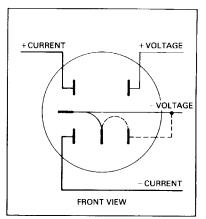

- Connect all current coils in series.
- b. Observe full load and light load unity PF and full load 0.5 PF lagging.
- c. If necessary, recalibrate light load to full load within acceptable tolerance using the left light load adjuster screw (use the right only when necessary).
- d. Calibrate full load unity PF to 100% or acceptable tolerance using the full load adapter screw.
- e. If necessary, calibrate full load 0.5 PF to within acceptable tolerance by adjusting both the left stator, right stator, and rear stator power factor adjustment screws an equal amount. If an adjustment is made, repeat step 4d.

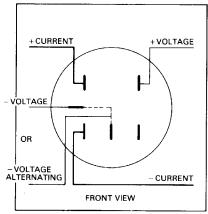
TEST SET-UP AND FIELD TESTING FOR ALPHA METERS

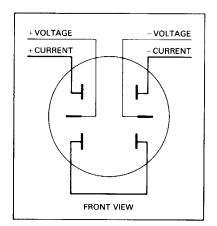

The test set-up for Alpha polyphase meters is the same as that for their equivalent electromechanical polyphase meters. A typical test connection using a rotating standard, phantom load and a form 5S meter for single-phase test is shown on page 51. Test connections for all types are shown on pages 52 through 58 of this publication. Additional test procedures, including field testing and recommended test equipment, are described in the Alpha Solid State Technical Manual, TM42-2180, Section 4.

TYPICAL CONNECTION ROTATING STANDARD PHANTOM LOAD AND METER FOR SINGLE PHASE TEST

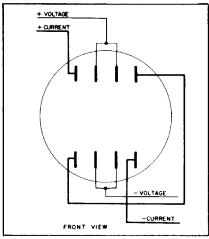

NOTE VOLTAGE AND CURRENT POLARITY MARKS ARE FOR REFERENCE ONLY


SINGLE-PHASE TEST CONNECTIONS

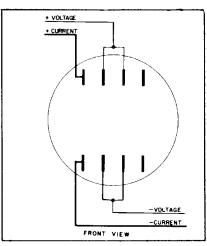

D5S, 2-wire self-contained—meter test.
Form 1S


D5S, 3-wire self-contained—meter test. Form 2S

D5S, 2-wire, 4- or 5-terminal transformer-rated—CT and VT test. Form 3S

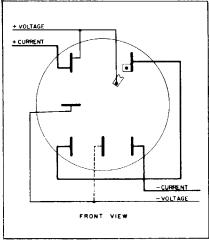


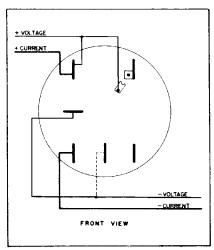
D5S, 2-wire, 5-terminal transformerrated—CT test. Form 3S

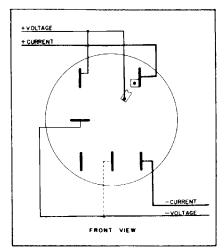


D5S, 3-wire, 6-terminal transformerrated—two CTs test. Form 4S

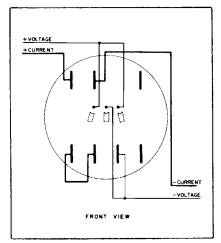

POLYPHASE TEST CONNECTIONS


D5S-2, D4S-2, E1S-2E 1-, 2-, or 3-phase, 3-wire, self-contained and transformer-type — Combined Stator Test. FORM 5S

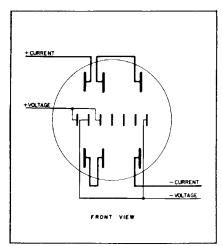

D5S-2, D4S-2, E1S-2E 1-, 2-, or 3-phase, 3-wire, self-contained and transformer-type — Left Stator Test. FORM 5S

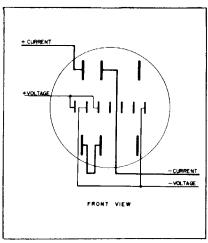

D5S-2, D4S-2, E1S-2E 1-, 2-, or 3-phase, 3-wire, self-contained and transformer-type — Right Stator Test. FORM 5S

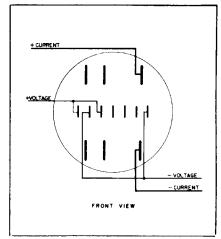
D5S-5, D4S-5, E1S-5E 1-, 2-, or 3-phase, 3-wire, self-contained — Combined Stator Test. FORM 12S

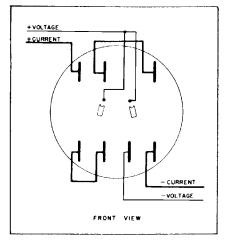

D5S-5, E1S-5E 1-, 2-, or 3-phase 3-wire, self contained — left Stator Test. FORM 12S

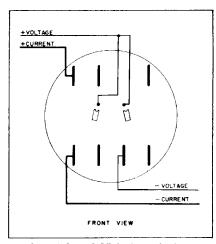
D5S-5, D4S-5, E1S-5E 1-, 2-, or 3-phase 3-wire, self-contained — Right Stator Test. FORM 12S

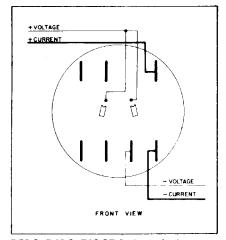

D5S-7, D4S-7, E1S-7E 3-phase, 4-wire, delta self-contained — Combined Stator Test. FORM 15S

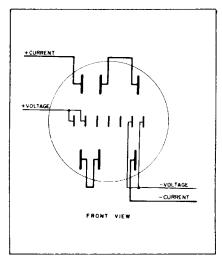

D5S-7, D4S-7, E1S-7E 3-phase, 4-wire, delta self-contained — Left Stator Test. FORM 15S

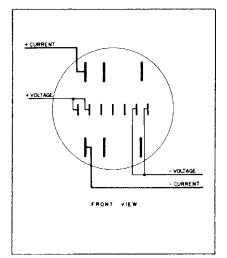

D5S-7, D4S-7, E1S-7E 3-phase, 4-wire, delta self-contained — Right Stator Test. FORM 15S

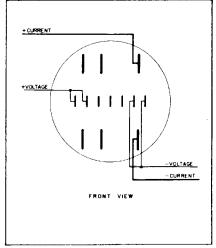

D5S-7, D4S-7, E1S-7E 3-phase, 4-wire, delta transformer-type — Combined Stator Test. FORM 8S

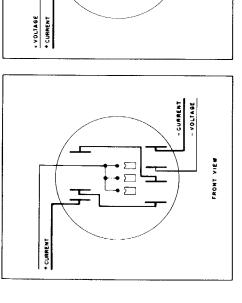

D5S-7, D4S-7, E1S-7E 3-phase, 4-wire, delta transformer-type — Left Stator Test. FORM 8S

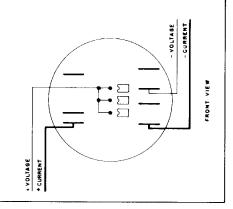

D5S-7, D4S-7, E1S-7E 3-phase, 4-wire, delta transformer-type — Right Stator Test. FORM 8S

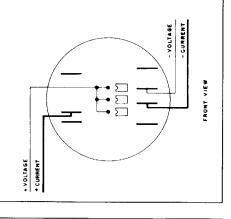

D5S-8, D4S-8, E1S-8E 3-phase, 4-wire, wye self-contained — Combined Stator Test. FORM 14S


D5S-8, D4S-8, E1S-8E 3-phase, 4-wire, wye self-contained — Left Stator Test. FORM 14S

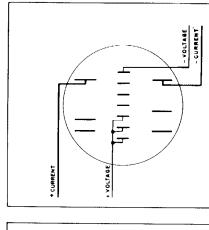

D5S-8, D4S-8, E1S-8E 3-phase, 4-wire, wye self-contained — Right Stator Test. FORM 14S


D5S-8, D4S-8, E1S-8E 3-phase, 4-wire, wye transformer-type — Combined Stator Test. FORM 6S


D5S-8, D4S-8, E1S-8E 3-phase, 4-wire, wye transformer type — Left Stator Test. FORM 6S

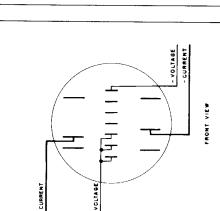

D5S-8, D4S-8, E1S-8E 3-phase, 4-wire, wye transformer-type — Right Stator Test. FORM 6S

D5S-3, D4S-3, E1S-3E 3-phase, 4-wire wye self-contained — Combined Stator Test. FORM 16S



D5S-3, D4S-3, E1S-3E 3-phase, 4-wire, wye self-contained – Left Stator Test. FORM 16S

+ VOLTAGE + CURRENT


D5S-3, D4S-3, E1S-3E 3-phase, 4-wire wye self-contained — Rear Stator Test. FORM 16S

D5S-3, D4S-3, E1S-3E 3-phase, 4-wire, wye self-contained — Right Stator Test. FORM 16S

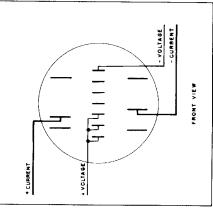
FRONT VIEW

- VOLTAGE - CURRENT

4111444

+ VOLTAGE

+ VOLTAGE

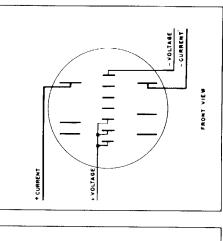

+ CURRENT

+ CURRENT

D5S.3, D4S.3, E1S.3E 3-phase, 4-wire, wye Tx Type — Left Stator Test. FORM 9S

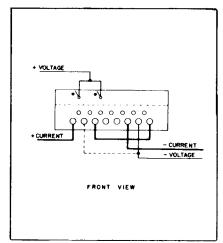
D5S-3, D4S-3, E1S-3E 3-phase, 4-wire, wye Tx Type – Combined Stator Test. FORM 9S

FRONT VIEW

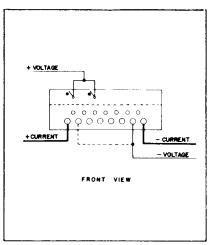


- VOLTAGE CURRENT

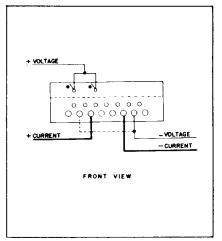
- VOLTABE - CURRENT

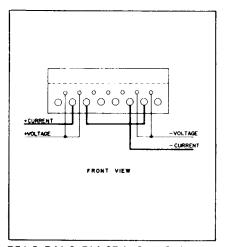

FRONT VIEW

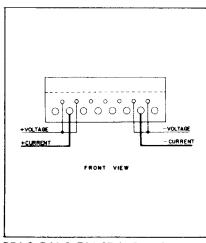
D5S-3, D4S-3, E1S-3E 3-phase, 4-wire, wye Tx Type — Rear Stator Test. FORM 9S

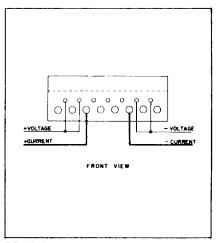


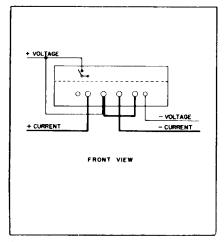
D5S-3, D4S-3, E1S-3E 3-phase, 4-wire, wye Tx Type — Right Stator Test. FORM 9S

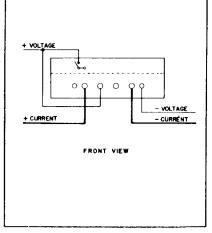

55

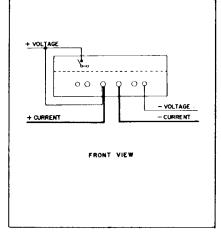

D5A-2, D4A-2 1-, 2-, or 3-phase, 3-wire, self-contained — Combined Stator Test. FORM 13A

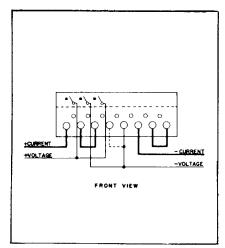

D5A-2, D4A-2 1-, 2-, or 3-phase, 3-wire, self-contained — Left Stator Test. FORM 13A

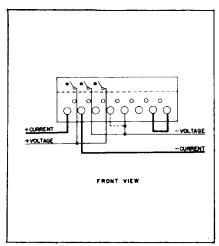

D5A-2, D4A-2 1-, 2-, or 3-phase, 3-wire, self-contained — Right Stator Test. FORM 13A

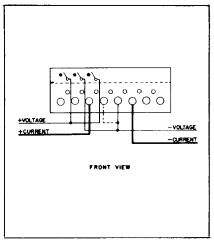

D5A-2, D4A-2, E1A-2E 1-, 2-, or 3-phase 3-wire, transformer-type — Combined Stator Test. FORM 5A

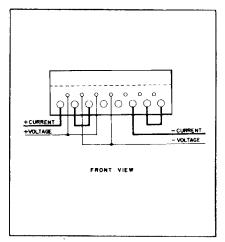

D5A-2, D4A-2, E1A-2E 1-, 2-, or 3-phase, 3-wire, transformer-type — Left Stator Test. FORM 5A

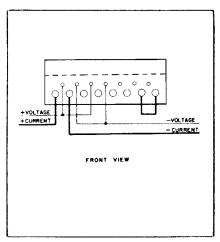

D5A-2, D4A-2, E1A-2E 1-, 2-, or 3-phase, 3-wire transformer-type — Right Stator Test. FORM 5A

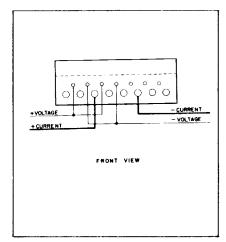

D2A-5 1-, 2-, or 3-phase, 3-wire, self-contained — Combined Stator Test. FORM 12A

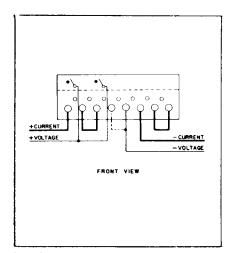

D2A-5 1-, 2-, or 3-phase, 3-wire, self-contained — Left Stator Test. FORM 12A

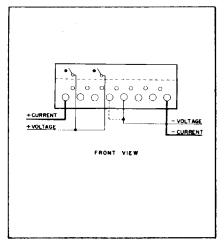

D2A-5 1-, 2-, or 3-phase, 3-wire, self-contained — Right Stator Test. FORM 12A

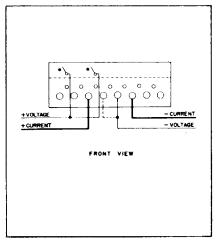

D5A-7, D4A-7 3-phase, 4-wire, delta self-contained — Combined Stator Test. FORM 15A

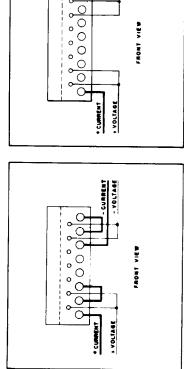

D5A-7, D4A-7 3-phase, 4-wire, delta self-contained — Left Stator Test. FORM 15A

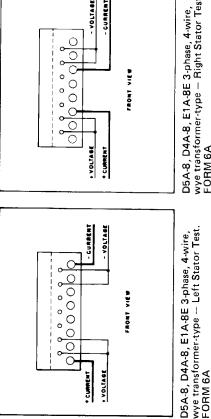

D5A-7, D4A-7 3-phase, 4-wire, delta self-contained — Right Stator Test. FORM 15A


D5A-7, D4A-7, E1A-7E 3-phase, 4-wire, delta transformer-type -- Combined Stator Test. FORM 8A


D5A-3, D4A-7, E1A-7E 3-phase, 4-wire, delta transformer-type — Left Stator Test. FORM 8A

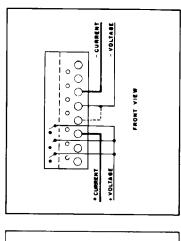

D5A-7, D4A-7, E1A-7E 3-phase, 4-wire, delta transformer-type — Right Stator Test. FORM 8A


D5A-8, D4A-8 3-phase, 4-wire, wye self-contained — Combined Stator Test. FORM 14A


D5A-8, D4A-8 3-phase, 4-wire, wye self-contained — Left Stator Test. FORM 14A

D5A-8, D4A-8 3-phase, 4-wire, wye self-contained — Right Stator Test. FORM 14A

wye transformer-type – Combined Stator Test, FORM 6A D5A-8, D4A-8, E1A-8E 3-phase, 4-wire,


3: A

FRONT

TEST CONNECTIONS

POLYPHASE

D5A-8, D4A-8, E1A-8E 3-phase, 4-wire, wye transformer-type – Right Stator Test. FORM 6A

- VOLTAGE

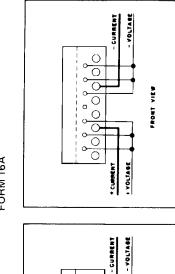
FRONT VIEW

0

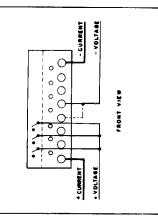
0 0

Ö

0


0

0


0 0

D5A:3, D4A-3 3-phase, 4-wire, wye self-contained – Right Stator Test. FORM 16A

D5A-3, D4A-3 3-phase, 4-wire, wye self-contained – Rear Stator Test. FORM 16A

D5A-3, D4A-3, E1A-3E 3-phase, 4-wire, wye Tx Type -- Right Stator Test. FORM 9A

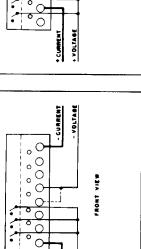
- CURRENT

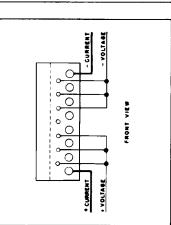
0

0 0

0

 \circ


+ CURRENT + VOLTAGE


- VOLTABE

FRONT VIEW

D5A-3, D4A-3 3-phase, 4-wire, wye self-contained — Left Stator Test. FORM 16A

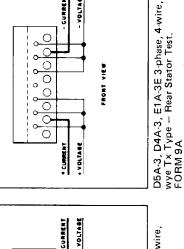
D5A-3, D4A-3 3-phase, 4-wire, wye self-contained — Combined Stator Test. FORM 16A

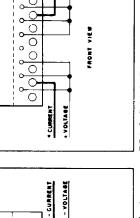
- CURRENT

FRONT VIEW

0

0


Ō


000

<u></u> <u></u>

+ CURRENT + VOLTAGE

D5A.3, D4A.3, E1A-3E 3-phase, 4-wire, wye Tx Type — Combined Stator Test. FORM 9A

D5A.3, D4A.3, E1A.3E 3.phase, 4-wire, wye Tx Type – Left Stator Test. FORM 9A

MAINTENANCE AND TESTING PROCEDURE

Recommended maintenance and testing procedure will vary considerably among the various meter designs. The manufacturer's Instruction Leaflets for each design should always be consulted when establishing a maintenance program.

However, the principle of watthour meter testing is always the same and consists of applying current and voltage to both a rotating standard and the meter under test, observing the revolutions of both, and calculating the meter accuracy by the following formula:

% meter accuracy = $\frac{\text{Meter Revolutions x Kh of Meter x 100}}{\text{Standard Revolutions x Kh of Standard x N (Number of Stators)}}$

The usual test points are referred to as full load, light load, and power factor. These are defined as follows:

FULL LOAD: Rated current, test amperes (TA) and rated voltage at unity power factor.

LIGHT LOAD: Ten percent of rated current and rated voltage at unity power factor.

POWER FACTOR: Rated current and rated voltage at 50 percent lagging power factor.

RULES FOR CHECKING METER INSTALLATIONS

- (1) Check installation against All In One diagram.
 - (a) Pay particular attention to polarities—especially on instrument transformer installations.
- (2) Check meter against unknown load, using formulas:

Watts Load =
$$\frac{\text{Kh x Rev. x 3600}}{\text{Seconds}}$$
 (Use watch with second hand.)

- (3) Check line currents. On balanced loads, line currents will be approximately the same. (The above applies for all installations.)
- (4) 3-Phase, 3-Wire
 - (a) Interchange two voltage leads on line side. Meter should stop on balanced loads, regardless of power factor.
 - (b) Open common potential. On balanced loads, meter should run at half-speed.
- (5) 3-Phase, 4-Wire Wye (2-Stator or "Z")
 - (a) Interchange two voltage leads on line side. Meter should stop on balanced loads, regardless of power factor.
 - (b) Open common potential. On balanced loads, meter should run at half-speed.
- (6) 3-Phase, 4-Wire Delta (2-Stator)
 - (a) Check one element at a time. On balanced loads, speed should be the same for each element regardless of power factor.
- (7) Network
 - (a) Interchange two voltage leads on line side. Meter should run backwards.
 - (b) Check one element at a time. Meter should run at same speed on balanced load, regardless of power factor.

FUNDAMENTALS OF INSTRUMENT TRANSFORMERS

Instrument Transformers perform two primary functions:

- (a) They transform the line current or voltage to values suitable for standard instrument which normally operate on 5 amperes and 120 volts.
- (b) They isolate the instruments and meters from the line voltage. To make this protection complete for both instruments and operators, the secondary circuit should be grounded. See IEEE Standard 52, Application Guide For Grounding or Instrument Transformer Secondary Circuits And Cases.

Instrument Transformers are intended for measurement and control purposes:

- (a) Current Transformers: Designed to have its primary winding connected in series with a circuit carrying the current to be measured or controlled. The secondary winding will then deliver a current proportional to the line current for operation of meters, instruments and relays.
- (b) Voltage Transformers: Designed to have its primary winding connected in parallel with a circuit, the voltage of which is to be measured or controlled. The secondary winding will then deliver a voltage proportional to the line voltage for operation of meters, instruments and relays.

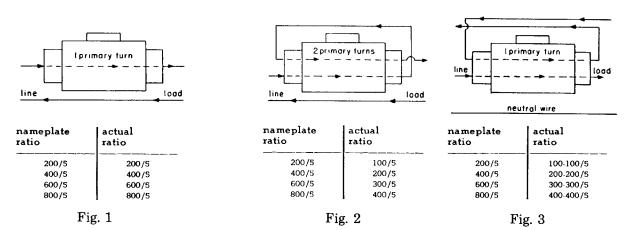
CURRENT TRANSFORMERS

Types of Current Transformers with respect to mechanical construction

Current transformers are classified as to their construction as follows:

- (a) Window type: This type has a secondary winding completely insulated and permanently assembled on the core, but has no primary winding. This type of construction is commonly used on 600 volt class current transformers.
- (b) Bar type: Same as the window type except a primary bar is inserted into the window opening. This bar can be permanently fixed into its position or be removable.
- (c) Wound (wound-primary) type: This type has the primary and secondary windings completely insulated and permanently assembled on the core. The primary is usually a multi-turn winding.

Types of Current Transformers with respect to electrical connection


- (a) Single primary: This term is frequently applied to current transformers having a single primary electrical circuit and is generally used to distinguish them from current transformers having series-parallel primary windings.
- (b) Window type with one or more primary turns: A single conductor straight through a window-type transformer is a "one-turn primary" connection such as described above and shown in Figure 1 below.

If this single conductor is taken through the "window" twice (see Figure 2)—the nameplate primary rating is reduced by 1/2. (Multiply meter reading by 1/2 the CT nameplate ratio.)

- If on a single-phase, three-wire circuit, two different leads are taken through the same window transformers (see Figure 3)—the nameplate primary rating is reduced by 1/2. (Multiply meter reading by 1/2 the CT nameplate ratio.)
- (c) Double ratio: Double-ratio units are built either with a two-part series parallel winding or with a tap on the secondary winding.

single-phase, two-wire metering

single-phase, three-wire metering

Current transformer Insulation

Current transformer insulation ratings are expressed in terms of Nominal System Voltage, Maximum Line-to-Ground Voltage and the corresponding Basic Impulse Insulation Level. These ratings are shown in Table (a) from IEEE C57.13-1993.

Table (a): Basic Impulse Insulation Levels for Current Transformers

Nominal System Voltage (kV)	Maximum Line-to Ground Voltage (kV)	BIL and Full Wave Crest kV
0.6	0.38	10
2.4	1.53	45
4.8	3.06	60
8.32	5.29	75
13.8	8.9	110 or 95
25.0	16.0	150 or 125
34.5	22.0	200 or 150
46.0	29.0	250
69.0	44.0	350

Current Transformer Burdens

The burden on a current transformer is the vector sum of resistances and reactances of all instruments connected in series in the secondary circuit, plus the resistance of secondary leads.

The name burden is used to distinguish this from the load on the primary circuit which is being metered or controlled.

Burden is expressed either as total ohms impedance at a certain power factor (not the load power factor), or as total volt amperes and power factor. These values apply for the condition of rated secondary current and frequency.

Standard metering burdens (from ANSI standards) are listed below. These, and the standard accuracy classes, have been established to facilitate comparison of different transformers on a uniform basis.

Table (b): Standard Metering Burdens for Standard 5-ampere Secondary Current Transformers

Standard Metering Burden Characteristics	Impedance, power factor and volt-ampere standard secondary burdens				
	for 60-cycle and 5-amp secondary current				
Burden Designation	Impedance: Ohms	Volt-amperes	Power Factor		
B-0.1	0.1	2.5	0.9		
B-0.2	0.2	5.0	0.9		
B-0.5	0.5	12.5	0.9		
B-0.9	0.9	22.5	0.9		
B-1.8	1.8	45	0.9		

Voltage Transformer Insulation

The insulation ratings for voltage transformers are expressed in terms of Rated Primary Voltage, Marked Ratio and the corresponding Basic Impulse Insulation Level. These values are shown in Table (c) from IEEE C57.13-1993.

Table (c): Ratings of Groups 1, 2 & 5 Voltage Transformers

<u>Group 1 voltage transformers</u> are for application with 100 percent of rated primary voltage across the primary winding when connected line-to-line or line-to-ground. Group 1 transformers shall be capable of continuous operation at 110 percent of rated voltage provided the burden, in volt-amperes at this voltage, does not exceed the thermal burden rating.

Rated Primary Voltage for Rated Voltage Line-to-Line (V)	Marked Ratio	Basic Impulse Insulation Level (kV Crest)
120 for 208Y	1:1	10
240 for 416Y	2:1	10
300 for 520Y	2.5:1	10
2400 for 4160Y	20:1	60
4200 for 7280Y	35:1	75
4800 for 8320Y	40:1	75
7200 for 12 470Y	60:1	110 or 95
8400 for 14 560Y	70:1	110 or 95

Group 2 voltage transformers are primarily for line-to-line service, and may be applied line-to-ground or line-to-neutral at a winding voltage equal to the primary voltage rating divided by $\sqrt{3}$.

Group 2 transformers shall be capable of continuous operation at 110 percent rated voltage, provided the burden, in volt-amperes at this voltage, does not exceed the thermal burden rating.

Table (c) (continued):

Rated Primary Voltage for Rated Voltage Line-to-Line (V)	Marked Ratio	Basic Impulse Insulation Level (kV Crest)
120 for 120Y	1:1	10
240 for 240Y	2:1	10
300 for 300Y	2.5:1	10
480 for 480Y	4:1	10
600 for 600Y	5:1	10
2400 for 2400Y	20:1	45
4800 for 4800Y	40:1	60
7200 for 7200Y	60:1	75
12 000 for 12 000Y	100:1	110 or 95
14 400 for 14 400Y	120:1	110 or 95
24 000 for 24 000Y	200:1	150 or 125
34 500 for 34 500Y	300:1	200 or 150
46 000 for 46 000Y	400:1	250
69 000 for 69 000Y	600:1	350

NOTE: Voltage transformers connected line-to-ground on an ungrounded system cannot be considered to be grounded transformers and must not be operated with the secondaries in closed delta because excessive currents may flow in the delta.

<u>Group 5 voltage transformers</u> are for line-to-ground connection only, and are for use outdoors on grounded systems. They may be insulated-neutral or ground-neutral-terminal type. They shall be capable of operation at 140 percent of rated voltage for 1 min without exceeding 175°C temperature rise.

Group 5 voltage transformers shall be capable of continuous operation at 110 percent of rated voltage, provided the burden, in volt-amperes at this voltage, does not exceed the thermal burden rating.

	Basic Impulse
Marked	Insulation Level
Ratio	(kV Crest)
60:1	110
70:1	110
100:1	150 or 125
120:1	150 or 125
175:1	200 or 150
	Ratio 60:1 70:1 100:1 120:1

Voltage Transformer Burdens

The burden on a voltage transformer is expressed in volt-amperes (VA) which is the secondary voltage multiplied by the amperes flowing through the instruments which are connected in parallel in the secondary circuit. The name <u>burden</u> is used to distinguish this from the load on the primary circuit which is being metered or controlled.

Standard burdens (from ANSI standards) are listed below in Table (d). These and the standard accuracy classes have been established to facilitate comparison of different transformers on a uniform basis.

Table (d): Standard Burdens

Burden Designation	Secondary Volt-amperes	Burden Power Factor
W	12.5	0.10
X	25	0.70
Y	75	0.85
Z	200	0.85
ZZ	400	0.85
M	35	0.20

Accuracy

Because of the function they perform, all instrument transformers must be classified as to accuracy. The error in an instrument transformer used in revenue metering is a combination of ratio error and phase angle error. The accuracy the transformer will maintain is given as a certain class—such as 0.3 or 0.6 accuracy class.

Meters can be adjusted to compensate for transformer error. However, in modern metering, the transformer error is small enough that it is neglected.

Polarity

When instrument transformers are used with instruments or relays which operate only according to the magnitude of the current or voltage, the phase position or direction of flow of current is of no consequence; the connection to the secondary terminals may be reversed without changing the indication of the instrument.

When instrument transformers are used with watthour meters in which the operation depends on the interaction of both current and voltage, the direction of current in the primary and secondary windings must be known. This is indicated by marking one primary and one secondary terminal with a distinctive POLARITY MARKER. According to Figure 4, when current is flowing toward the transformer in the marked primary lead, it is flowing away from the transformer in the marked secondary lead.

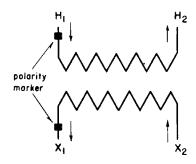


Figure 4 - Arrows indicate instantaneous relative direction of currents in the windings.

SAFETY

Always short a current transformer secondary winding before removing a meter. Never short a voltage transformers secondary winding.

FUNDAMENTALS OF WATTHOUR METERS

Watthour meters measure electrical energy by utilizing interaction of fluxes generated by the current and voltage elements acting to produce eddy currents in the rotor (disk). They eddy current flow produces lines of force which in turn interact with the flux in the air gap to produce turning torque on the disk. The meter is then a carefully calibrated induction motor, the speed of which depends upon the energy being measured. Each revolution of the meter disk has a value in watt-hours. The register counts these revolutions and displays the count as KWH's.

Amps x Volts x Stators (at unity PF) = Watts (capacity)

$$\frac{WH}{H} \div \frac{R}{H} = \frac{WH}{H} \times \frac{H}{R} = \frac{WH}{R} = Kh \text{ (test constant - watthours per revolution)}$$

R/H represents design disk speed (speed of the disk with all stators excited with rated current and voltages). Since this design speed is the same for all meters of a given type or design family, a variety of gearing ratios is required to properly represent different current-voltage values and different numbers of stators. Register ratios (Rr) are selected to accomplish this task. A 30 amp, 240 volt, two-stator meter has a different register ratio than does a 15 amp, 120 volt, three-stator meter though both run at the same full load speed.

$$Rr = \frac{10x1000}{Kh \times 1st \text{ Red.}}$$
 = One revolution of "pick-off" gear to one revolution of KWH dial.

10 represents one revolution of first dial of register (read as 10 KWH's)

1000 represents WH/KWH - Required to relate disk rotation to dial rotation.

Kh represents value of one revolution of disk expressed in $\frac{WH}{R}$

First reduction at shaft is ratio disk to "pick-off" gear.

For example, if disk shaft has a single lead worm and register pick-off gear has 100 teeth, first reduction at shaft is 100/1.

All meters are wired internally to conform to form numbers which are marked on the meter nameplate. It is possible to relate a circuit diagram to the meter wiring by references to the meter form number.

HANDY TABLES AND FORMULAS

Formulas for determining amperes, hp, kw, and kva

to find	direct current	alternating current			
		single phase	two phase-4 wire*	three phase	
amperes when	hp x 746	hp x 746	hp x 746	hp x 746	
horsepower is known	E x % eff	E x % eff x p-f	2 x E x % eff x p-f	1.73 x E x % eff x p-f	
amperes when	<u>kw x 1000</u>	<u>kw x 1000</u>	kw x 1000	kw x 1000	
kilwatts is known	E	E x p-f	2 x E x p-f	1.73 x E x p-f	
amperes when		kva x 1000	kva x 1000	kva x 1000	
kva is known		E	2 x E	1.73 x E	
kilowatts	<u>I x E</u>	<u>I x E x p-f</u>	I x E x 2 x p-f	I x E x 1.73 x p-f	
	1000	1000	1000	1000	
kva		<u>I x E</u> 1000	<u>I x E x 2</u> 1000	<u>I x E x 1.73</u> 1000	
horsepower (output)	<u>I x E x % eff</u>	<u>I x E x % eff x p-f</u>	I x E x 2 x % eff x p-f	I x E x 1.73 x % eff x p-f	
	746	746	746	746	

^{*}For 3-wire, 2-phase circuits the current in the common conductor is 1.41 times that in either of the two other conductors.

Common electrical terms

ampere (I) = unit of current or rate of flow of electricity

volt (E) = unit of electromotive force

ohm (R) = unit of resistance

ohms law—I=E (d-c or 100% p-f)

= 1,000,000 ohmsmegohm

volt amperes (va) = unit of apparent power

= EI (single phase) $= E \times I \times 1.73$ (3-phase)

kilovolt amperes (kva) = 1000 volt-amperes watt (w) = unit of true power

 $= va \times p-f$ = .00134 hp

kilowatt (kw) = 1000 watts

(p-f) = ratio of true to apparent power power factor

 $=\frac{w}{va}$ ° $\frac{kw}{kva}$

(whr) = unit of electrical work watthour

= one watt for one hour

= 3.413 Btu= 2,655 ft lbs

kilowatthour (kwhr) = 1000 watthours

horsepower (hp) = measure of time rate of doing work

= equivalent of raising 33,000 lbs, one ft

in one minute

= 746 watts

demand factor = ratio of maximum demand to the total

connected load

diversity factor = ratio of the sum of individual

> maximum demands of the various subdividions of a system to the maximum demand of the whole system

= ratio of the average load over a

load factor designated period of time to the peak

load occurring in that period

How to compute power factor

Determining watts:

 $p-f = \frac{watts}{volts \ x \ amperes}$

1. From watthour meter.

watts = rpm of disc x 60 x kh

Where kh is meter constant printed on face or nameplate

If metering transformers are used, above must be multiplied by the transformer ratios.

2. Directly from wattmeter reading.

where:

volts = line-to-line voltage as measured by voltmeter amps = current measured in line wire (not neutral) by ammeter.

Conversion factors

$$C^{\circ} = \frac{5}{9} \times (F^{\circ} - 32^{\circ})$$

$$F^{\circ} = \frac{9}{5}C^{\circ} + 32^{\circ}$$

C°	-15	-10	-5	0	5	10	15	20
F°	5	14	23	32	41	50	59	68
C°	25	30	35	40	45	50	55	60
F°	77	86	95	104	113	122	131	140
C°	65	70	75	80	85	90	95	100
F°	149	158	167	176	185	194	203	212

1 inch = 2.54 centimeters

1 kilogram = 2.20 lbs

1 square inch = 1,273,200 circular mills

1 circular mill = .785 square mill 1 btu =778 ft lbs

= 252 calories = 8,760 hours1 year

VALUES OF COMMONLY USED TRIGONOMETRIC FUNCTIONS

Angle	Sin	Cos	Tan	Cot	Sec	Csc
0	0.000	1.000	0.000	∞	1.000	∞
15	0.259	0.966	0.268	3.732	1.035	3.861
30	$0.500 = \left(\frac{1}{2}\right)$	$0.866 = \left(\frac{\sqrt{3}}{2}\right)$	$0.577 = \left(\frac{1}{\sqrt{3}}\right)$	$1.732 = \left(\sqrt{3}\right)$	$1.155 = \left(\frac{2}{\sqrt{3}}\right)$	2.000
45	$0.707 = \left(\frac{1}{\sqrt{2}}\right)$	$0.707 = \left(\frac{1}{\sqrt{2}}\right)$	1.000	1.000	$1.414 = \left(\sqrt{2}\right)$	$1.414 = \left(\sqrt{2}\right)$
60	$0.866 = \left(\frac{\sqrt{3}}{2}\right)$	$0.500 = \left(\frac{1}{2}\right)$	$1.732 = \left(\sqrt{3}\right)$	$0.577 = \left(\frac{1}{\sqrt{3}}\right)$	2.000	$1.155 = \left(\frac{2}{\sqrt{3}}\right)$
75	0.966	0.259	3.732	0.268	3.861	1.035
90	1.000	0.000	∞	0.000	8	1.000
120	$0.866 = \left(\frac{\sqrt{3}}{2}\right)$	$-0.500 = \left(-\frac{1}{2}\right)$	$-1.732 = \left(\sqrt{3}\right)$	$-0.577 = \left(-\frac{1}{\sqrt{3}}\right)$	-2.000	$1.155 = \left(\frac{2}{\sqrt{3}}\right)$
150	$0.500 = \left(\frac{1}{2}\right)$	$-0.866 = \left(-\frac{\sqrt{3}}{2}\right)$	$-0.577 = \left(-\frac{1}{\sqrt{3}}\right)$	$-1.732 = \left(\sqrt{3}\right)$	$-1.155 = \left(-\frac{2}{\sqrt{3}}\right)$	2.000
180	0.000	-1.000	0.000	8	-1.000	8
270	-1.000	0.000	∞	0.000	8	-1.000
360	0.000	1.000	0.000	8	1.000	8

 $\infty = Infinity$

Elster Electricity, LLC

Raleigh, North Carolina, USA

- +1 800 338 5251 (US Technical Support)
- +1 800 257 9754 (US Sales Support)
- +1 919 212 4800 (US Main Telephone)
- +1 905 634 4895 (Canadian Main Telephone) support@us.elster.com

www.elsterelectricity.com

ABB Inc.

Highway 43 North Pinetops, NC 27864 Tel: +1 252 827 3212 Fax: +1 252 827 4286 www.abb.com/mediumvoltage